Post-processing filters
Post-processing filters are handled by the terapy.filters package.
TeraPy comes with the following post-processing filter modules:
ApodizationWindow
- Function: apodization window
- Dimension: 1
- Filter type: pre-transform
Properties |
Type |
Default |
Description |
type |
int |
0 |
type: 0.Boxcar, 1.Bartlett, 2.Blackmann, 3.Hamming, 4.Hanning, 5.Blackman-Harris, 6.Lanczos, 7.Custom |
custom |
str |
exp(-4x**2) |
custom window function (defined on [-1, 1]) |
Centering
- Function: center maximum value by zero-padding
- Dimension: 1
- Filter type: generic
Properties |
Type |
Default |
Description |
|
|
|
|
Harminv
- Function: filter data by harmonic inversion
- Dimension: 1
- Filter type: generic
Properties |
Type |
Default |
Description |
|
|
|
|
HighPass
- Function: high pass window
- Dimension: 1
- Filter type: pre-transform
Properties |
Type |
Default |
Description |
type |
int |
0 |
type (see ApodizationWindow) |
size |
float |
11.0 |
filter spread (%) |
position |
float |
25.0 |
position offset (%) |
relative |
bool |
True |
if True, offset is relative to data maximum |
custom |
str |
exp(-4x**2) |
custom window function (defined on [-1, 1]) |
LombScargle
- Function: Lomb-Scargle periodogram
- Dimension: 1
- Filter type: transform
Properties |
Type |
Default |
Description |
|
|
|
|
LowPass
- Function: low pass window
- Dimension: 1
- Filter type: pre-transform
Properties |
Type |
Default |
Description |
type |
int |
0 |
type (see ApodizationWindow) |
size |
float |
11.0 |
filter spread (%) |
position |
float |
25.0 |
position offset (%) |
relative |
bool |
True |
if True, offset is relative to data maximum |
custom |
str |
exp(-4x**2) |
custom window function (defined on [-1, 1]) |
Multiply
- Function: multiply data by given factor
- Dimension: 1
- Filter type: generic
Properties |
Type |
Default |
Description |
factor |
float |
1.0 |
multiplication factor |
Normalize
- Function: normalize data with reference data (interpolate if necessary)
- Dimension: 1
- Filter type: reference
Properties |
Type |
Default |
Description |
imethod |
int |
1 |
interpolation method: 0. nearest neighbor, 1. linear, 2. quadratic, 3. cubic |
Offset
- Function: offset correction
- Dimension: 1
- Filter type: generic
Properties |
Type |
Default |
Description |
position |
float |
3.0 |
distance before main peak (%) |
width |
float |
0.1 |
area on which to average (%) |
Power
- Function: raise data to given power
- Dimension: 1
- Filter type: generic
Properties |
Type |
Default |
Description |
power |
float |
2.0 |
exponent |
SavitzkyGolay
- Function: Savitzky-Golay smoothing
- Dimension: 1
- Filter type: generic
Properties |
Type |
Default |
Description |
size |
int |
11 |
filter size (number of data points) |
order |
int |
5 |
polynomial order |
Welch
- Function: Welch periodogram
- Dimension: 1
- Filter type: transform
Properties |
Type |
Default |
Description |
type |
int |
0 |
window type: 0. Boxcar, 1. Triangular, 2. Blackman, 3. Hamming, 4. Hann, 5. Bartlett, 6. Flat top, 7. Parzen, 8. Bohman, 9. Blackman-Harris, 10. Nuttall, 11. Bartlett-Hann |
length |
float |
20.0 |
window size (%) |
overlap |
float |
50.0 |
overlap between windows (%) |
scaling |
int |
0 |
scaling type: 0. density, 1. spectrum |
WaveletDenoise
- Function: wavelet denoising
- Dimension: 1
- Filter type: generic
- Dependencies: pyWavelets, statsmodels, pandas
Properties |
Type |
Default |
Description |
type |
str |
bior6.8 |
wavelet code (see list in pywt.wavelist()) |
threshold |
float |
0.1 |
filtering threshold |
auto_threshold |
bool |
True |
if True, compute threshold automatically |
thresholding |
int |
0 |
thresholding type: 0.Hard, 1.Soft |
ZeroPadding
- Function: extend data to the next power of 2
- Dimension: 1
- Filter type: generic
Properties |
Type |
Default |
Description |
|
|
|
|