seapy.subsystems.subsystemstructural.SubsystemStructural

class seapy.subsystems.subsystemstructural.SubsystemStructural(name, system, **properties)[source]

Bases: seapy.subsystems.subsystem.Subsystem

Abstract base class for all structural subsystems.

__init__(name, system, **properties)

Constructor.

Parameters:
  • name (string) – Identifier
  • component (SeaPy.components.Component) – Component

Methods

__init__(name, system, **properties) Constructor.
addExcitation(name, model, **properties) Add excitation to subsystem.
SubsystemStructural.df
disable([couplings]) Disable this subsystem.
enable([couplings]) Enable this subsystem.
info([attributes]) Return dataframe.
plot(quantity[, yscale]) Plot quantity.

Attributes

SORT str(object=’‘) -> str
average_frequency_spacing
classname Name of class of the object.
component
conductance Conductance G.
conductance_point_average Average point conductance of a structural component.
damping_term The damping term is the ratio of the modal half-power bandwidth to the average modal frequency spacing.
dlf Damping loss factor of subsystem.
enabled Switch indicating whether the object is enabled.
energy Total energy E in subsystem.
frequency Frequency.
impedance Impedance Z
included Indicates whether the object is included in the analysis.
linked_couplings_from
linked_couplings_to
linked_excitations
mobility Mobility Y
modal_density Modal density.
modal_energy Class capable of containing spectral values.
modal_overlap_factor Modal overlap factor.
name
power_input Total input power due to excitations.
resistance Resistance R, the real part of the impedance Z.
resistance_point_average Average point resistance.
soundspeed_group Group velocity in a subsystem.
soundspeed_phase Phase velocity in a subsystem.
tlf Total loss factor.
velocity Vibrational velocity v.
velocity_level Velocity level L_v.
wavenumber Wave number.
conductance_point_average[source]

Average point conductance of a structural component.

\overline{G} = \frac{1}{4} M \overline{\delta f}

See Lyon, page 149, equation 8.5.2 as well as page 200.

resistance_point_average[source]

Average point resistance.

velocity[source]

Vibrational velocity v.

v = \sqrt{\frac{E}{m}}

Craik, equation 3.11, page 55.

velocity_level[source]

Velocity level L_v.

Return type:numpy.ndarray

The structural velocity level is calculated as

L_v = 20 \log_{10}{\left( \frac{v}{v_0} \right) }

Previous topic

seapy.subsystems.subsystem.Subsystem

Next topic

seapy.subsystems.subsystemacoustical.SubsystemAcoustical

This Page