seapy.couplings.couplingpointstructural.CouplingPointStructural

class seapy.couplings.couplingpointstructural.CouplingPointStructural(name, system, **properties)[source]

Bases: seapy.couplings.coupling.Coupling

Model of a point coupling between structural components.

__init__(name, system, **properties)

Constructor.

Parameters:
  • name (string) – Identifier
  • junction (seapy.junctions.junction) – junction
  • subsystem_from (seapy.subsystems.Subsystem) – subsystem from
  • subsystem_to (seapy.subsystems.Subsystem) – subsystem_to

Methods

__init__(name, system, **properties) Constructor.
CouplingPointStructural.df
disable([subsystems]) Disable this coupling.
enable([subsystems]) Enable this coupling.
info([attributes]) Return dataframe.
plot(quantity[, yscale]) Plot quantity.

Attributes

SORT str(object=’‘) -> str
classname Name of class of the object.
clf Coupling loss factor.
enabled Switch indicating whether the object is enabled.
frequency Frequency.
impedance_from Choses the right impedance of subsystem_from.
impedance_to Choses the right impedance of subsystem_from.
included Indicates whether the object is included in the analysis.
junction
mobility_from Mobility of subsystem_from corrected for the type of coupling.
mobility_to Mobility of subsystem_to corrected for the type of coupling.
modal_coupling_factor Modal coupling factor of the coupling.
name
reciproce Reciproce or inverse coupling.
resistance_from Resistance of subsystem_from corrected for the type of coupling.
resistance_to Resistance of subsystem_to corrected for the type of coupling.
subsystem_from
subsystem_to
tau Frequency averaged transmission coefficient
clf[source]

Coupling loss factor.

impedance_from[source]

Choses the right impedance of subsystem_from. Applies boundary conditions correction as well.

impedance_to[source]

Choses the right impedance of subsystem_from. Applies boundary conditions correction as well.

tau[source]

Frequency averaged transmission coefficient

\overline{\tau_{12}} = \frac{8 \pi \langle \overline{G_1} \rangle f \eta_1 M_1}{1 + \frac{\eta_1}{\eta_2}} \frac{\eta_2 + \eta_{21}}{\eta_12}

\tau_{12} = \frac{4 R_1 R_2}{\left| \sum_{i=1}^m Z_i \right|^2}

See :cite:`1998:lyon`.

Previous topic

seapy.couplings.coupling.Coupling

Next topic

seapy.couplings.couplinglinestructural.CouplingLineStructural

This Page