skgpuppy.FFNI module¶
-
class
skgpuppy.FFNI.
FullFactorialNumericalIntegrationEvans
(func, mean)¶ Bases:
skgpuppy.FFNI.PropagateMoments
Class to perform error propagation using Evans Method (1967).
Warning
This method is very inaccurate (especially for skewness and kurtosis)
Parameters: - func – (n-d) function to approximate
- mean – propagate uncertainty around this mean vector
-
propagate
(Sigma_x, skew=False, kurtosis=False)¶ Propagates a normal distributed uncertainty around self.mean through the deterministic function self.func.
Parameters: - Sigma_x – Covariance matrix (assumed to be diagonal)
- skew – Return the skewness of the resulting distribution
- kurtosis – Return the kurtosis of the resulting distribution
Returns: mean, variance, [skewness, [kurtosis]]
-
class
skgpuppy.FFNI.
FullFactorialNumericalIntegrationHermGauss
(func, mean, order)¶ Bases:
skgpuppy.FFNI.PropagateMoments
Class to perform error propagation using Gauss-Hermite quadrature
Parameters: - func – (n-d) function to approximate
- mean – propagate uncertainty around this mean vector
- order – order of the integration series
-
propagate
(Sigma_x, skew=False, kurtosis=False)¶ Propagates a normal distributed uncertainty around self.mean through the deterministic function self.func.
Parameters: - Sigma_x – Covariance matrix (assumed to be diagonal)
- skew – Return the skewness of the resulting distribution
- kurtosis – Return the kurtosis of the resulting distribution
Returns: mean, variance, [skewness, [kurtosis]]
-
class
skgpuppy.FFNI.
FullFactorialNumericalIntegrationNaive
(func, mean)¶ Bases:
skgpuppy.FFNI.PropagateMoments
Class to perform error propagation using Scipy numerical integration
Parameters: - func – (n-d) function to approximate
- mean – propagate uncertainty around this mean vector
-
propagate
(Sigma_x, skew=False, kurtosis=False)¶ Propagates a normal distributed uncertainty around self.mean through the deterministic function self.func.
Parameters: - Sigma_x – Covariance matrix (assumed to be diagonal)
- skew – Return the skewness of the resulting distribution
- kurtosis – Return the kurtosis of the resulting distribution
Returns: mean, variance, [skewness, [kurtosis]]
-
class
skgpuppy.FFNI.
PropagateMoments
(func, mean)¶ Bases:
object
Superclass for uncertainty propagation through deterministic functions
Parameters: - func – (n-d) function to approximate
- mean – propagate uncertainty around this mean vector
-
propagate
(Sigma_x, skew=False, kurtosis=False)¶ Propagates a normal distributed uncertainty around self.mean through the deterministic function self.func.
Parameters: - Sigma_x – Covariance matrix (assumed to be diagonal)
- skew – Return the skewness of the resulting distribution
- kurtosis – Return the kurtosis of the resulting distribution
Returns: mean, variance, [skewness, [kurtosis]]