Source code for skfuzzy.filters.fire

"""
fire.py : Collection of Fuzzy Inference Ruled by ELSE-action (FIRE) filters.

"""

import numpy as np
from ..image import view_as_windows
from ..membership import trimf


[docs]def fire1d(x, l1=0, l2=1): """ 1-D filtering using Fuzzy Inference Ruled by Else-action (FIRE) [1]. FIRE filtering is nonlinear, and is specifically designed to remove impulse (salt and pepper) noise. Parameters ---------- x : 1d array or iterable Input sequence, filtered range limited by ``l1`` and ``l2``. l1 : float Lower input range limit for ``x``. l2 : float Upper input range limit for ``x``. Returns ------- y : 1d array FIRE filtered sequence. Notes ----- Filtering occurs for ``l1 < |x| < l2``; for ``|x| < l1`` there is no effect. References ---------- .. [1] Fabrizio Russo, Fuzzy Filtering of Noisy Sensor Data, IEEE Instrumentation and Measurement Technology Conference, Brussels, Belgium, June 4 - 6, 1996, pp 1281 - 1285. """ from ..image import pad as padimg # Enforce range limit np.clip(x, -l2, l2, out=x) # Fuzzy input sequence dx = np.arange(-1000, 1001) * l2 / 1000. # Fuzzy membership functions po = np.atleast_2d(trimf(dx, [l1, l2, l2])).ravel() ne = np.atleast_2d(trimf(dx, [-l2, -l2, -l1])).ravel() # Fuzzy neighborhood rules (indices for comparison) rules = np.r_[[[0, 1, 3], [1, 3, 4], [0, 3, 4], [0, 1, 4]]] # Padding the array x = padimg(x, 2, mode='reflect') # Generate rolling 5-point window view into the array xx = view_as_windows(x, (5,)) # Zero each local window relative to center point center = xx[:, 2] dxx = xx - center[:, np.newaxis].repeat(5, axis=1) # Conduct interpolation all at once, on every point, for po and ne mpo = np.interp(dxx, dx, po) mne = np.interp(dxx, dx, ne) # Build output correction functions all at once lam = np.zeros((0, len(mpo))) lam2 = np.zeros((0, len(mne))) for rule in rules: lam = np.vstack((lam, np.atleast_2d(mpo[:, rule].min(axis=1)))) lam2 = np.vstack((lam2, np.atleast_2d(mne[:, rule].min(axis=1)))) lam = np.max(lam, axis=0) lam2 = np.max(lam2, axis=0) # Corrected result y = xx[:, 2] + l2 * (lam - lam2) return y
[docs]def fire2d(im, l1=0, l2=255, fuzzyresolution=1): """ 2-D filtering using Fuzzy Inference Ruled by Else-action (FIRE) [1]. FIRE filtering is nonlinear, and is specifically designed to remove impulse (salt and pepper) noise. Parameters ---------- I : 2d array Input image. l1 : float Lower limit of filtering range. l2 : float Upper limit of filtering range. fuzzyresolution : float, default = 1 Resolution of fuzzy input sequence, or spacing between [-l2+1, l2-1]. The default assumes an integer input; for floating point images a decimal value should be used approximately equal to the bit depth. Returns ------- J : 2d array FIRE filtered image. Notes ----- Filtering occurs for ``l1 < |x| < l2``; outside this range the data is unaffected. References ---------- .. [1] Fabrizio Russo, Fuzzy Filtering of Noisy Sensor Data, IEEE Instrumentation and Measurement Technology Conference, Brussels, Belgium, June 4 - 6, 1996, pp 1281 - 1285. """ from ..image import pad as padimg im = padimg(im.astype(float), 1, mode='reflect') # Fuzzy input sequence dx = np.arange(- l2 + fuzzyresolution, l2 - fuzzyresolution, fuzzyresolution) # Fuzzy membership functions po = np.atleast_2d(trimf(dx, [l1, l2 - fuzzyresolution, l2 - fuzzyresolution])) ne = np.atleast_2d(trimf(dx, [fuzzyresolution - l2, fuzzyresolution - l2, - l1])) # Combine into matrix multi_stack_rules = np.hstack([po.T, ne.T]) rules1 = np.r_[[[2, 4, 8], [4, 6, 8], [2, 6, 8], [2, 4, 6]]] - 1 rules2 = np.r_[[[1, 3, 7, 9], [1, 4, 8, 9], [3, 6, 7, 8], [1, 2, 6, 9], [2, 3, 4, 7]]] - 1 # Zero the local windows local_win = view_as_windows(im, (3, 3)) im2 = im[1:-1, 1:-1].copy() im2 = im2[..., np.newaxis, np.newaxis].repeat(3, axis=2).repeat(3, axis=3) dx = local_win - im2 # Vectorization allows concise, fast calculation of lam and lam2 idx = l2 + dx idx = idx.reshape((idx.shape[0], idx.shape[1], -1)) mu = multi_stack_rules[idx.astype(int), :] lam = np.concatenate((np.min(mu[:, :, rules1[range(4), :], 0], axis=3), np.min(mu[:, :, rules2[range(5), :], 0], axis=3)), axis=2).max(axis=2) lam2 = np.concatenate((np.min(mu[:, :, rules1[range(4), :], 1], axis=3), np.min(mu[:, :, rules2[range(5), :], 1], axis=3)), axis=2).max(axis=2) return im[1:-1, 1:-1] + (l2 - 1) * (lam - lam2)