RRtoolbox.tools package¶
Submodules¶
RRtoolbox.tools.lens module¶
-
RRtoolbox.tools.lens.
drawCircle
(array, cnt, color=0)[source]¶ project circle over array.
Parameters: - array – array to draw circle
- cnt – contours of segmentation to fit circle
- color – color of lens
Returns: array
-
RRtoolbox.tools.lens.
drawEllipse
(array, cnt, color=0)[source]¶ project ellipse over array.
Parameters: - array – array to draw ellipse
- cnt – contours of segmentation to fit ellipse
- color – color of lens
Returns: array
-
RRtoolbox.tools.lens.
fitLens
(img, mask, color=0, asEllipse=False, addmask=False)[source]¶ Place lens-like object in image.
Parameters: - img – image to place lens
- mask – mask to fit lens
- color – color of the lens
- asEllipse – True to fit lens as a ellipse, False to fit circle.
- addmask – return additional mask parameter
Returns: image with simulated lens
-
RRtoolbox.tools.lens.
simulateLens
(img, threshfunc=None, pshape=(300, 300), color=0, asEllipse=True)[source]¶ Place lens-like object in image.
Parameters: - img – image to place lens.
- threshfunc – function to segment retinal area and get its mask.
- pshape – shape to resize processing image to increase performance.
- color – color of the lens.
- asEllipse – True to fit lens as a ellipse, False to fit circle.
Returns: image with simulated lens.
RRtoolbox.tools.segmentation module¶
-
RRtoolbox.tools.segmentation.
find_optic_disc_watershed
(img, P)[source]¶ Find optic disk in image using a watershed method.
Parameters: - img – BGR image
- P – gray image
Returns: optic_disc, Crs, markers, watershed
-
RRtoolbox.tools.segmentation.
get_beta_params_Otsu
(P)[source]¶ Automatically find parameters for alpha masks using Otsu threshold value.
Parameters: P – gray image Returns: beta1 for minimum histogram value, beta2 for Otsu value
-
RRtoolbox.tools.segmentation.
get_beta_params_hist
(P)[source]¶ Automatically find parameters for bright alpha masks using a histogram analysis method.
Parameters: P – gray image Returns: beta1 for minimum valley left of body, beta2 for brightest valley right of body where the body starts at the tallest peak in the histogram.
-
RRtoolbox.tools.segmentation.
get_bright_alpha
(backgray, foregray, window=None)[source]¶ Get alpha transparency for merging foreground to background gray image according to brightness.
Parameters: - backgray – background image. (as float)
- foregray – foreground image. (as float)
- window – window used to customizing alfa. It can be a binary or alpha mask, values go from 0 for transparency to any value where the maximum is visible i.e a window with all the same values does nothing. A binary mask can be used, where 0 is transparent and 1 is visible. If not window is given alfa is not altered and the intended alpha is returned.
Returns: alfa mask
-
RRtoolbox.tools.segmentation.
get_layered_alpha
(back, fore)[source]¶ Get bright alpha mask (using Otsu method)
Parameters: - back – BGR background image
- fore – BGR foreground image
Returns: alpha mask
-
RRtoolbox.tools.segmentation.
layeredfloods
(img, gray=None, backmask=None, step=1, connectivity=4, weight=False)[source]¶ Create an alpha mask from an image using a weighted layered flooding algorithm,
Parameters: - img – BGR image
- gray – Gray image
- backmask – background mask
- step – step to increase upDiff in the floodFill algorithm. If weight is True step also increases the weight of the layers.
- connectivity – pixel connectivity of 4 or 8 to use in the floodFill algorithm
- weight – Increase progressively the weight of the layers using the step parameter.
Returns: alpha mask
-
RRtoolbox.tools.segmentation.
retina_markers_thresh
(P)[source]¶ Retinal markers thresholds to find background, retinal area and optic disc with flares based in the histogram.
Parameters: P – gray image Returns: min,b1,b2,max where:
black background < min b1 > retina < b2 flares > max
-
RRtoolbox.tools.segmentation.
retinal_mask
(img, biggest=False, addalpha=False)[source]¶ Obtain the mask of the retinal area in an image. For a simpler and lightweight algorithm see
retinal_mask_watershed()
.Parameters: - img – BGR or gray image
- biggest – True to return only biggest object
- addalpha – True to add additional alpha mask parameter
Returns: - if addalpha:
binary mask, alpha mask
- else:
binary mask
-
RRtoolbox.tools.segmentation.
retinal_mask_watershed
(img, parameters=(10, 30, None), addMarkers=False)[source]¶ Quick and simple watershed method to obtain the mask of the retinal area in an image. For a more robust algorithm see
retinal_mask()
.Parameters: - img – BGR or gray image
- parameters – tuple of parameters to pass to
filterFactory()
- addMarkers – True to add additional Marker mask. It contains 0 for unknown areas, 1 for background and 2 for retinal area.
Returns: - if addMarkers:
binary mask, Markers mask
- else:
binary mask
RRtoolbox.tools.selectors module¶
-
class
RRtoolbox.tools.selectors.
EntropyPlot
(images, win='Entropy tests', func=None)[source]¶ Bases:
RRtoolbox.lib.plotter.Plotim
Plot entropy test
-
RRtoolbox.tools.selectors.
entropy
(imlist, loadfunc=None, invert=False)[source]¶ Entropy function modified from:
Yan Liu, Feihong Yu, An automatic image fusion algorithm for unregistered multiply multi-focus images, Optics Communications, Volume 341, 15 April 2015, Pages 101-113, ISSN 0030-4018, http://dx.doi.org/10.1016/j.optcom.2014.12.015. (http://www.sciencedirect.com/science/article/pii/S0030401814011559)
Parameters: imlist – list of path to images or arrays Returns: sortedD,sortedImlist,D,fns - where sortedD is the ranking of the Entropy test, D = [D0,...,DN] D0>DN
- sortedImlist is fns sorted to match sortedD, D is the list of the absolute difference between entropy and the root mean square, D = ||E-RMS||