Source code for rr.preprocessor
#!/usr/bin/env python
# encoding: utf-8
# Andre Anjos <andre.anjos@idiap.ch>
# Thu 18 Jun 14:24:51 CEST 2015
'''A simple pre-processing that applies Z-normalization to the input
features'''
import numpy
[docs]def estimate_norm(X):
'''Estimates the mean and standard deviation from a data set
Parameters:
X (numpy.ndarray): A 2D numpy ndarray in which the rows represent examples
while the columns, features of the data you want to estimate
normalization parameters on
Returns:
numpy.ndarray: A 1D numpy ndarray containing the estimated mean over
dimension 1 (columns) of the input data X
numpy.ndarray: A 1D numpy ndarray containing the estimated unbiased
standard deviation over dimension 1 (columns) of the input data X
'''
return X.mean(axis=0), X.std(axis=0, ddof=1)
[docs]def normalize(X, norm):
'''Applies the given norm to the input data set
Parameters:
X (numpy.ndarray): A 3D numpy ndarray in which the rows represent examples
while the columns, features of the data set you want to normalize. Every
depth corresponds to data for a particular class
norm (tuple): A tuple containing two 1D numpy ndarrays corresponding to the
normalization parameters extracted with :py:func:`estimated_norm` above.
Returns:
numpy.ndarray: A 3D numpy ndarray with the same dimensions as the input
array ``X``, but with its values normalized according to the norm input.
'''
return numpy.array([(k - norm[0]) / norm[1] for k in X])