Source code for revscoring
"""
This library contains a set of facilities for constructing and applying
:class:`~revscoring.ScorerModel` s to MediaWiki revisions. This library
eases the training and testing of Machine Learning-based scoring
strategies.
* See the :ref:`API reference <api-reference>` for detailed information
Key Features
------------
Scorer Models
+++++++++++++
:class:`~revscoring.ScorerModel` are the core of
the `revscoring` system. Provide a simple interface with complex
internals. Most commonly, a :class:`revscoring.scorer_models.MLScorerModel`
(Machine Learned) is
:meth:`~revscoring.scorer_models.MLScorerModel.train`'d and
:meth:`~revscoring.scorer_models.MLScorerModel.test`'d on
labeled data to provide a basis for scoring.
We currently support
:mod:`Support Vector Classifier <revscoring.scorer_models.svc>`,
:mod:`Random Forest <revscoring.scorer_models.rf>`, and
:mod:`Naive Bayes <revscoring.scorer_models.nb>`
type models. See :mod:`revscoring.scorer_models`
Example:
>>> import mwapi
>>> from revscoring import ScorerModel
>>> from revscoring.extractors import api
>>>
>>> with open("models/enwiki.damaging.linear_svc.model") as f:
... model = ScorerModel.load(f)
...
>>> extractor = api.Extractor(mwapi.Session(host="https://en.wikipedia.org",
... user_agent="revscoring demo"))
>>> values = extractor.extract(123456789, model.features)
>>> print(model.score(values))
{'prediction': True,
'probability': {False: 0.4694409344514984,
True: 0.5305590655485017}}
Feature extraction
++++++++++++++++++
Revscoring provides a dependency-injection-based feature extraction
framework that allows new features to be built on top of old. This allows
a powerful means to expressing new features and a simple way to address
efficiency concerns. See :mod:`revscoring.features`,
:mod:`revscoring.datasources`, and :mod:`revscoring.extractors`
Example:
>>> from mwapi import Session
>>> from revscoring.extractors import api
>>> from revscoring.features import temporal, wikitext
>>>
>>> session = Session("https://en.wikipedia.org/w/api.php", user_agent="test")
>>> api_extractor = api.Extractor(session)
>>>
>>> features = [temporal.revision.day_of_week,
... temporal.revision.hour_of_day,
... wikitext.revision.parent.headings_by_level(2)]
>>>
>>> values = api_extractor.extract(624577024, features)
>>> for feature, value in zip(features, values):
... print("\t{0}: {1}".format(feature, repr(value)))
...
<temporal.revision.day_of_week>: 6
<temporal.revision.hour_of_day>: 19
<wikitext.revision.parent.headings_by_level(2)>: 5
Language support
++++++++++++++++
Many features require language specific utilities to be available to
support feature extraction. In order to support this, we provide a
collection of language feature sets that work like other features except
that they are language-specific. Language-specific feature sets are
available for the following languages:
:data:`~revscoring.languages.arabic`,
:data:`~revscoring.languages.dutch`,
:data:`~revscoring.languages.english`,
:data:`~revscoring.languages.estonian`,
:data:`~revscoring.languages.french`,
:data:`~revscoring.languages.german`,
:data:`~revscoring.languages.hebrew`,
:data:`~revscoring.languages.indonesian`,
:data:`~revscoring.languages.italian`,
:data:`~revscoring.languages.persian`,
:data:`~revscoring.languages.portuguese`,
:data:`~revscoring.languages.spanish`,
:data:`~revscoring.languages.turkish`,
:data:`~revscoring.languages.ukrainian`, and
:data:`~revscoring.languages.vietnamese`.
See :mod:`revscoring.languages`
Example:
>>> from revscoring.datasources.revision_oriented import revision
>>> from revscoring.dependencies import solve
>>> from revscoring.languages import english, spanish
>>>
>>> features = [english.informals.revision.matches,
... spanish.informals.revision.matches]
>>> values = solve(features, cache={revision.text: "I think it is stupid."})
>>>
>>> for feature, value in zip(features, values):
... print("\t{0}: {1}".format(feature, repr(value)))
...
<len(<english.informals.revision.matches>)>: 2
<len(<spanish.informals.revision.matches>)>: 0
""" # noqa
from .datasources import Datasource
from .dependencies import Dependent, DependentSet
from .extractors import Extractor
from .features import Feature
from .scorer_models import ScorerModel
__version__ = "1.0.0rc2" # Change in setup.py
__all__ = [Datasource, Dependent, DependentSet, Extractor, Feature,
ScorerModel]