API: Brick and Mortar Classes¶
QuantumSystem¶
-
class
qubricks.system.
QuantumSystem
(parameters=None, **kwargs)[source]¶ Bases:
object
The QuantumSystem class is used to describe particular quantum systems, and provides utility functions which assists in the analysis of these systems. While it is possible to directly instantiate a QuantumSystem object, and to programmatically add the description of the quantum system of interest, it is more common to subclass it or to use a ready-made subclass from qubricks.wall.systems.
Parameters: - parameters (Parameters, str or None) – An object used to initialise a Parameters instance for use in this object.
- kwargs (dict) – Additional keyword arguments to pass to init, which may be useful for subclasses.
- Specifying parameters:
Every QuantumSystem instance requires access to a Parameters instance in order to manage the physical quantities associated with the represented quantum system. When instantiating QuantumSystem or one of its subclasses, this is managed by passing as a value to the parameters keyword one of the following: - A Parameters instance, which is then used directly. - A string, in which case QuantumSystem attempts to load a parameters
configuration from the path indicated in the string.- None, in which case an empty Parameters instance is constructed.
- Subclassing:
If you choose to subclass QuantumSystem in order to represent a quantum system of interest, it should only be necessary to implement some or all of the following methods:
- init(self, **kwargs)
- init_parameters(self)
- init_hamiltonian(self)
- init_bases(self)
- init_states(self)
- init_measurements(self)
- init_derivative_ops(self)
- get_derivative_ops(self,components=None)
Documentation pertaining to the behaviour of these methods is available below. Importantly, these methods will always be called in the order given above.
- Integration and Measurement:
Perhaps among the most common operations you might want to perform with your quantum system is simulated time-evolution and measurement.
Integration is handled as documented in the QuantumSystem.integrate method.
Measurement is handled using the measure attribute, which points to a Measurements object. For example, if a measurement named ‘fidelity’ has been added to this QuantumSystem, you could use:
>>> system.measure.fidelity(...)
For more, see the documentation for Measurements.
-
H
(*components)[source]¶ This method returns an Operator instance representing the Hamiltonian of the system. If components is specified, only the components of the OperatorSet object listed are included, otherwise the Operator object returns its default set. Note that if the Hamiltonian object is simply an Operator, the Operator is simply returned as is.
Parameters: components (tuple) – Sequence of component names.
-
Operator
(components, basis=None, exact=False)[source]¶ This method is a shorthand way of creating an Operator instance that shares the same Parameters instance as this QuantumSystem. This is shorthand for:
>>> Operator(components, parameters=self.p, basis=self.basis(basis) if basis is not None else None, exact=exact)
For more documentation, refer to Operator.
-
OperatorSet
(operatorMap, defaults=None)[source]¶ This method is a shorthand way of creating an OperatorSet instance. This method first checks through the values of operatorMap and converts anything that is not an Operator to an Operator using:
>>> system.Operator(operatorMap[key])
Then, it creates an OperatorSet instance:
>>> OperatorSet(operatorMap, defaults=defaults)
For more documentation, see Operator and OperatorSet.
-
add_basis
(name, basis)[source]¶ This method is used to add a basis. The first StandardBasis instance to be added will become the default basis used to describe this QuantumSystem.
Parameters:
-
add_derivative_op
(name, state_op)[source]¶ This method adds an association between a string name and a StateOperator object, for use as a derivative operator.
Parameters: - name (str) – The name to be used to refer to the provided StateOperator.
- state_op (StateOperator) – The StateOperator to be stored.
-
add_measurement
(name, measurement)[source]¶ This method add a Measurement instance to the Measurements container associated with this Quantum System object. It can then be called using:
>>> system.measure.<name>
See Measurements for more information.
-
add_state
(name, state, basis=None, params={})[source]¶ This method allows a string name to be associated with a state. This name can then be used in QuantumSystem.state to retrieve the state. States are assumed to be in the basis specified, and are transformed as necessary to be in the standard basis of this QuantumSystem instance.
Parameters:
-
add_subspace
(name, subspace, basis=None, params={})[source]¶ This method adds a new association between a string and a sequence of states (which can be in turn be the names of named states).
Parameters: - name (str) – The name to associate with this subspace.
- subspace (str or list of str, Operators or sequences convertible to numpy array) – The input subspace to be stored.
- basis (str, Basis or None) – The basis in which the subspace is represented.
- params (dict) – The parameter overrides to use during basis transformation.
-
bases
¶ A sorted list of the names of the bases configured for this QuantumSystem instance.
-
basis
(basis)[source]¶ This method returns the Basis object associated with the provided name. If basis is a Basis object, then it is simply returned; and if basis is None, a StandardBasis is returned (or if a StandardBasis instance has been added to this instance, then it is returned instead).
Parameters: basis – A name of a basis, a Basis instance, or None.
-
default_derivative_ops
¶ The list (or sequence) of names corresponding to the derivative operators that will be used by default (if no operator names are otherwise supplied).
-
derivative_ops
(ops=None, components=None)[source]¶ This method returns a dictionary of named StateOperator objects, which are used to calculate the instantaneous time derivative by QuantumSystem.integrate and related methods. This method picks upon the operators created by init_derivative_ops and get_derivative_ops, as well as the default ‘evolution’ operator which describes evolution under the Schroedinger equation.
Parameters: - ops (iterable of strings) – A sequence of operators to include in the returned dictionary.
- components (iterable of strings) – A sequence of component names to enable in the OperatorSet describing the Hamiltonian (if applicable).
-
dim
¶ The dimension of this QuantumSystem; or equivalently the number of basis vectors.
-
ensemble
(state, input=None, output=None, threshold=False, evaluate=True, params={})[source]¶ This method returns a ensemble 2D vector (numpy array) that is associated with the input state. If the state associated with state is not an ensemble, then the outer product is taken and returned. Just like QuantumSystem.state, this method allows basis conversion of states.
Parameters: - state (str or Operator or sequence convertible to numpy array) – The input state. If this is a string, this should refer to a named state as in states or ensembles.
- input (str, Basis or None) – The basis of the input states.
- output (str, Basis or None) – The basis into which this method should convert output states.
- threshold (bool or float) – Parameter to control thresholding (see Basis.transform documentation)
- evaluate (bool) – If input type is Operator, whether the Operator should be numerically evaluated.
- params (dict) – Parameter overrides to use during evaluation and basis transformation.
-
ensembles
¶ A sorted list of names that are associated with ensembles. Ensembles are added using QuantumSystem.add_state, where a 2D state is automatically identified as an ensemble.
-
get_derivative_ops
(components=None)[source]¶ This method can be used by subclasses to specify the StateOperator objects use to describe the time derivative of the evolution of the quantum system described by this object. These operators are added just before integration the operators described in init_derivative_ops and the ‘evolution’ operator describing Schroedinger evolution. Any properties of this QuantumSystem instance should not change before integration.
Parameters: components (iterable) – The components activated in the Hamiltonian for this integration.
-
get_integrator
(initial=None, input=None, output=None, threshold=False, components=None, operators=None, time_ops={}, params={}, integrator='RealIntegrator', **kwargs)[source]¶ This method is shorthand for manually creating an Integrator instance. It converts all operators and states into a consistent basis and form for use in the integrator.
Parameters: - initial (iterable) – A sequence of initial states to use (including string names of known states and ensembles; see QuantumSystem.state).
- input (str, Basis or None) – Basis of input states (including string name of stored Basis; see QuantumSystem.basis).
- output (str, Basis or None) – Basis to use during integration (including string name of stored Basis; see QuantumSystem.basis)
- threshold (bool or float) – Parameter to control thresholding during basis transformations (see Basis.transform).
- components (iterable of str) – A sequence of component names to enable for this Integrator (see QuantumSystem.H).
- operators (iterable of str) – A sequence of operator names to use during integration (see QuantumSystem.derivative_ops). Additional operators can be added using Integrator.add_operator on the returned Integrator instance.
- time_ops (dict) – A dictionary of StateOperator instances, or a two-tuple of a StateOperator subclass with a dictionary of arguments to pass to the constructor when required, indexed by times (see Integrator.time_ops). The two-tuple specification is for use with multithreading, where a StateOperator instance may not be so easily picked. The StateOperator instance is initialised before being pass to an Integrator instance.
- params (dict) – Parameter overrides to use during basis transformations and integration.
- integrator (str or classobj) – The integrator class to use as a Class; either as a string (in which case it is imported from qubricks.wall) or as a Class to be instantiated.
- kwargs (dict) – Additional keyword arguments to pass to Integrator constructor.
-
hamiltonian
¶ The Operator or OperatorSet object used to describe this quantum system. If not yet specified, this will be None. The Hamiltonian can be specified using:
>>> system.hamiltonian = <Operator or OperatorSet>
Note
The Hamiltonian is expected to be represented such that the basis vectors form the standard basis. This is, in practice, not a limitation; but is important to remember when transforming bases.
-
init
(**kwargs)[source]¶ This method can be used by subclasses to initialise the state of the QuantumSystem instance. Any excess kwargs beyond parameters passed to q QuantumSystem instance will be passed to this method.
-
init_bases
()[source]¶ This method can be used by subclasses to initialise the bases to be used by this instance of QuantumSystem. Bases can be added directly using the add_basis method; or, if this method returns a dictionary of Basis objects (indexed by string names), then they will be added as bases of this system.
-
init_derivative_ops
()[source]¶ This method can be used by subclasses to initialise the StateOperator objects use to describe the time derivative of the evolution of the quantum system described by this object. Derivative operators may be added directly using add_derivative_op, or, if a dictionary of StateOperator objects is returned indexed with string names, then they are added as derivative operators of this object. If the operators depend on the hamiltonian or other properties of the quantum system, then the operators should be implemented in get_derivative_ops instead.
This method should also initialise the default_derivative_ops property.
-
init_hamiltonian
()[source]¶ This method can be used by subclasses to initialise the Hamiltonian to be used to describe the Quantum System. The Hamiltonian can either be set directly in this method, using:
>>> self.hamiltonian = <Operator or OperatorSet>
Alternatively, if this method returns an Operator or OperatorSet object, then it will be set as the Hamiltonian for this QuantumSystem instance.
-
init_measurements
()[source]¶ This method can be used by subclasses to initialise the measurements that will be used with this QuantumSystem instance. This can be done directly, using add_measurement; or, if this method returns a dictionary of Measurement objects indexed by string names, then they will be added as potential measurements of this quantum system.
-
init_parameters
()[source]¶ This method can be used by subclasses to add any additional parameters required to describe the quantum system. If this method returns a dictionary, then it is used to update the parameters stored in the Parameters instance. This would be equivalent to:
>>> system.p << system.init_parameters()
Parameters may, of course, be set directly by this method, using (for example):
>>> self.p.x = 1
-
init_states
()[source]¶ This method can be used by subclasses to initialise named states, ensembles, and subspaces. This can be done directly, using the corresponding add_state and add_subspace methods. If a dictionary is returned, then it is assumed to be a dictionary of states indexed by names, which are then added to the system using add_state. Note that this assumes that the states are represented in the standard basis of this QuantumSystem object.
-
integrate
(times, initial, **kwargs)[source]¶ This method constructs an Integrator instance with initial states defined as initial using get_integrator, and then calls start on that instance with times specified as times.
Parameters: - times (iterable of floats or str) – The times for which to return the instantaneous state. All values are passed through the Parameters instance, allowing for times to be expressions of parameters.
- initial (list or tuple of numpy arrays) – A sequence of initial states (or ensembles).
This method is equivalent to: >>> system.get_integrator(initial=initial, **kwargs).start(times)
For more documentation, see get_integrator and Integrator.start.
-
measurements
¶ A sorted list of the names of the measurements associated with this QuantumSystem.
-
p
¶ A reference to the Parameters instance used by this object.
-
show
()[source]¶ This method prints (to stdout) a basic overview of the QuantumSystem that includes: - the dimension of the model - the representation of the Parameters instance - the names of any bases - the names of any states - the names of any ensembles - the names of any subspaces - the names of any derivative operators
-
state
(state, input=None, output=None, threshold=False, evaluate=True, params={})[source]¶ This method returns a state vector (numpy array) that is associated with the input state. As well as retrieving named states from storage, this method also allows basis conversions of the state. Note that states can be 1D or 2D (states or ensembles).
Parameters: - state (str or Operator or sequence convertible to numpy array) – The input state. If this is a string, this should refer to a named state as in states.
- input (str, Basis or None) – The basis of the input states.
- output (str, Basis or None) – The basis into which this method should convert output states.
- threshold (bool or float) – Parameter to control thresholding (see Basis.transform documentation)
- evaluate (bool) – If input type is Operator, whether the Operator should be numerically evaluated.
- params (dict) – Parameter overrides to use during evaluation and basis transformation.
-
state_fromString
(state, input=None, output=None, threshold=False, params={})[source]¶ This method creates a state object from a string representation, as interpreted by the Basis.state_fromString method. Otherwise, this method acts as the QuantumSystem.state method.
Parameters: - state (str) – The string representation of the state.
- input (str, Basis or None) – The basis to use to interpret the string.
- output (str, Basis or None) – The basis into which this method should convert output states.
- threshold (bool or float) – Parameter to control thresholding (see Basis.transform documentation)
- params (dict) – Parameter overrides to use during evaluation and basis transformation.
-
state_projector
(state, **kwargs)[source]¶ This method returns a projector onto the state provided. This method is equivalent to:
>>> system.subspace_projector([state], **kwargs)
Refer to subspace_projector for more information.
-
state_toString
(state, input=None, output=None, threshold=False, params={})[source]¶ This method create a string representation of a state object, using Basis.state_toString. Otherwise, this method acts like QuantumSystem.state.
Parameters: - state (str or Operator or sequence convertible to numpy array) – The input state. If this is a string, this should refer to a named state as in states.
- input (str, Basis or None) – The basis of the input states.
- output (str, Basis or None) – The basis into which this method should convert output states, and which should be used to create the string representation.
- threshold (bool or float) – Parameter to control thresholding (see Basis.transform documentation)
- params (dict) – Parameter overrides to use during evaluation and basis transformation.
Converts a state object to its string representation, as interpreted by the Basis.state_toString method. As with QuantumSystem.state, basis conversions can also be done.
-
states
¶ A sorted list of the names of the states configured for this QuantumSystem instance.
-
subspace
(subspace, input=None, output=None, threshold=False, evaluate=True, params={})[source]¶ This method returns the subspace associated with the input subspace. A subspace is a list of states (but not ensembles). The subspace is the span of the states. Otherwise, this method acts like QuantumSystem.state.
Parameters: - subspace (str or list of str, Operators or sequences convertible to numpy array) – The input subspace. If this is a string, this should refer to a named state as in states.
- input (str, Basis or None) – The basis of the input states.
- output (str, Basis or None) – The basis into which this method should convert output states.
- threshold (bool or float) – Parameter to control thresholding (see Basis.transform documentation)
- evaluate (bool) – If input type is Operator, whether the Operator should be numerically evaluated.
- params (dict) – Parameter overrides to use during evaluation and basis transformation.
-
subspace_projector
(subspace, input=None, output=None, invert=False, threshold=False, evaluate=True, params={})[source]¶ This method returns a projector onto the provided subspace (which can be the name of a named subspace, or a list of named states. If invert is True, then the projector returned is onto the subspace orthogonal to the provided one.
Parameters: - subspace (str or list of str, Operators or sequences convertible to numpy array) – The input subspace. If this is a string, this should refer to a named state as in states.
- input (str, Basis or None) – The basis of the provided subspace.
- output (str, Basis or None) – The basis into which this method should convert output subspaces.
- invert (bool) – True if the projector returned should be onto the subspace, and False if the projector should be off the subspace.
- threshold (bool or float) – Parameter to control thresholding (see Basis.transform documentation)
- evaluate (bool) – If input type is Operator, whether the Operator should be numerically evaluated.
- params (dict) – Parameter overrides to use during evaluation and basis transformation.
-
subspaces
¶ A sorted list of named subspaces. The subspaces can be extracted using the QuantumSystem.subspace method.
-
use_ensemble
(ops=None, ensemble=False)[source]¶ This method is used to check whether integration should proceed using ensembles or state vectors. It first checks which kind of evolution is supported by all of the StateOperators, as heralded by the StateOperator.for_state and StateOperator.for_ensemble methods. It then checks that there is a match between the type of state being used and the type of states supported by the operators. Note that if ensemble is False, indicating that the state is a ordinary state vector, then it is assumed that if this method returns True, indicating ensemble evolution is to be used, that the states will be converted using the outer-product with themselves to ensembles. Note that this is already done by get_integrator.
Parameters: - ops (iterable) – A sequence of Operator objects or names of Operators. The list can be mixed.
- ensemble (bool) – True one or more of the input states are to be ensembles. False otherwise.
Operator¶
-
class
qubricks.operator.
Operator
(components, parameters=None, basis=None, exact=False)[source]¶ Bases:
object
Operator is the base class used by QuBricks to facilitate dynamic generation of matrices (with partial support for n-dimensional operations when exact is False). Operator objects wrap around a dictionary of “components” which are indexed by a function of parameters. When evaluated, Operator objects evaluate the parameters using a Parameters instance, and then add the various components together. Operator objects support arithmetic (addition, subtraction and multiplication); basis transformations; restriction to a subspace of the basis; inversion (where appropriate); and the tensor (Kronecker) product.
Parameters: - components (dict or numpy.ndarray or sympy.Matrix) – Specification of the operator form
- parameters (parampy.Parameters) – Parameters instance
- basis (Basis or None) – The basis in which Operator is represented
- exact (bool) –
True
if Operator is to maintain an exact representation of numbers.
- Operator Specifications:
The first and simplest way to construct an Operator object is to wrap an Operator around a pre-existing numpy array or sympy Matrix.
>>> p = Parameters() >>> a = numpy.array([[1,2,3],[4,5,6]]) >>> op = Operator(a, parameters=p) >>> x,y,z = sympy.var('x,y,z') >>> b = sympy.Matrix([[x,y**2,z+x],[y+z,x**2,x*y*z]]) >>> op2 = Operator(b, parameters=p)
The first example above demonstrates wrapping a static numeric matrix into an Operator object; while the second demonstrates a conversion of an already symbolic operator into an Operator object.
The other way to define specify the form of an Operator object is to create a dictionary with keys of (functions of) parameters and values corresponding to the representation of those parameters in the matrix/array. For example:
>>> d = {'x':[[1,0,0],[0,0,0]], 'sin(y)':[[0,0,0],[0,0,3]], None: [[1,1,1],[2,2,2]]} >>> op = Operator(d, parameters=p)
The above code snippet represents the below matrix:
[x+1, 1 , 1 ] [ 2 , 2 , 2 + sin(y) ]
- Evaluating an Operator:
Operator objects can be evaluated to numeric matricies (whereby parameters) are substituted in from the Parameters instance, or symbolic sympy.Matrix objects.
Numeric evaluation looks like calling the operator:
>>> d = {'x':[[1,0,0],[0,0,0]], 'sin(y)':[[0,0,0],[0,0,3]], None: [[1,1,1],[2,2,2]]} >>> op = Operator(d, parameters=p) >>> op(x=2, y=0) array([[ 3.+0.j, 1.+0.j, 1.+0.j], [ 2.+0.j, 2.+0.j, 2.+0.j]])
Note
Providing parameters as shown above makes use of functionality in the Parameters instance, where they are called parameter overrides. Consequently, you can also supply functions of other parameters here. You can also supply united quantities. See the Parameters documentation for more.
Symbolic evaluation looks like:
>>> op.symbolic() Matrix([ [x + 1, 1, 1], [ 2, 2, 3*sin(y) + 2]])
Parameters can also be specified during symbolic evaluation:
>>> op.symbolic(y=0) Matrix([ [x + 1, 1, 1], [ 2, 2, 2]])
Note
Parameter substitution during symbolic evaluation makes use of the subs function of sympy objects. It too supports substitution with functions of parameters. See the sympy documentation for more.
It is also possible to apply an Operator to a vector without ever explicitly evaluating the Operator. This may lead to faster runtimes. See the documentation for the apply method.
- Operator arithmetic:
Operator objects can be added, subtracted and multiplied like any other Pythonic numeric object.
Supported operations are: - Addition:
op1+op2
- Subtraction:op1-op2
- Multiplication:op1*op2
- Scaling:k*op1
, with k a scalar constant.- Operator indexing:
Operator objects use numpy.ndarray objects to internally represent the array; and thus inherits sophisticated indexing. You can index an Operator object using any indexing method supported by numpy. For example:
>>> op[1:3,2] # Will return a new `Operator` object sliced with the 2nd and third rows, with the third column
The rest of the functionality of the Operator object is described in the method documentation below.
-
apply
(state, symbolic=False, left=True, params={})[source]¶ This method returns the object resulting from multiplication by this Operator without ever fully constructing the Operator; making it potentially a little faster. When using apply on symbolic arrays, be sure to set symbolic to True.
Parameters: - state (numpy.array or object) – An array with suitable dimensions for being pre- (or post-, if left is False) multipled by the Operator represented by this object.
- symbolic (bool) –
True
if multiplication should be done symbolically using sympy, andFalse
otherwise (uses numpy). - left (bool) –
True
if the state should be multiplied from the left; andFalse
otherwise. - params (dict) – A dictionary of parameter overrides.
For example:
>>> op = Operator([[1,2],[3,4]]) >>> op.apply([1,2]) array([ 5.+0.j, 11.+0.j])
-
basis
¶ A reference to the current Basis of the Operator; or None if it has no specified Basis.
-
block_diag
(other)[source]¶ This method returns a new Operator object with the other Operator appended as a diagonal block below this Operator.
Parameters: other (Operator) – Another Operator to add as a diagonal block.
-
change_basis
(basis=None, threshold=False, params={})[source]¶ This method returns a copy of this Operator object expressed in the new basis. The threshold parameter allows elements in the resulting Operator which differ from zero only by numerical noise to be set to zero. For more information, refer to the documentation for Basis.transform.
Parameters: - basis (Basis or None) – The basis in which to represent this Operator.
- threshold (bool or float) – A boolean indicating whether to threshold to minimise numerical error, or a float indicating the threshold level.
- params (dict) – Parameter overrides to use during the basis transformation.
Returns: A reference to the transformed Operator.
-
clean
(threshold)[source]¶ This method zeroes out all elements of the components which are different from zero only by a magnitude less than threshold. One must use this function with caution, as it does not take into account the value of the parameter multiplying the matrix form.
Parameters: - threshold – A threshold value.
- type – float
-
collapse
(*wrt, **params)[source]¶ This method returns a new Operator object that is a simplification of this one. It collapses and simplifies this Operator object by assuming certain parameters are going to be fixed and non-varying. As many parameters as possible are collapsed into the constant component of the operator. All other entries are analytically simplified as much as possible. If no parameters are specified, then only the simplification is performed. A full collapse to a numerical matrix should be achieved by evaluating it numerically, as described in the class description.
Note
An optimised cache of parameters (and parameter expressions) is also made using Parameters.optimise. These optimised parameter extraction methods also assume that the parameters will no longer change. If the do end up changing, you might witness some odd results.
Parameters: For example:
>>> op.collapse('x',y=1)
This will lead to a new Operator being formed which is numeric except for terms involving x, when y is set to 1.
-
connected
(*indices, **params)[source]¶ This method returns a set of indices that represents the rows/columns that mix with the specified indices if this operator were to be multiplied by itself. This method requires that the Operator object be square.
Parameters: For example:
>>> op.connected(1,2,3,x=12,y=(3,'ms')) {1,2,3}
The above output would suggest that in the context of x and y set as indicated, the specified subspace is closed under repeated self-multiplication of the Operator.
-
exact
¶ A boolean value indicating whether the Operator should maintain exact representations of numbers.
-
inverse
()[source]¶ This method computes and returns the pseudo-inverse of the Operator object. This may be very slow. If you do not need a symbolic inversion, then simply numerically evaluate the Operator object and take a numerical inverse using numpy.
Note
The pseudo-inverse will equal the normal inverse if it exists.
-
matrix
(**params)[source]¶ This method returns a symbolic representation of the Operator object as a sympy.Matrix object, as documented in the general class documentation.
Parameters: params (dict) – A dictionary of parameter overrides. For example:
>>> op.matrix(x=2,y='sin(x)')
-
p
¶ A reference to the internal Parameter object.
-
restrict
(*indices)[source]¶ This method returns a copy of the Operator restricted to the basis elements specified as row/column indices. This method requires that the shape of the Operator is square.
Parameters: indices (tuple) – A sequence of zero-indexed indices which correspond to the rows/columns to keep. For example:
>>> op = Operator([[1,2,3],[4,5,6],[7,8,9]]).restrict(1,2) >>> op() array([[ 5.+0.j, 6.+0.j], [ 8.+0.j, 9.+0.j]])
-
shape
¶ A tuple representing the dimensions of the Operator.
-
symbolic
(**params)[source]¶ This method returns a symbolic representation of the Operator object as a numpy array with a dtype of object, as documented in the general class documentation.
Parameters: params (dict) – A dictionary of parameter overrides. For example:
>>> op.symbolic(x=2,y='sin(x)')
-
transform
(transform_op=None)[source]¶ This method returns a copy of this Operator instance with its components transformed according to the supplied transform_op function. This can effect a basis transformation without providing any information as to the basis of the new Operator. If you want to transform basis, it is probably better you use: Operator.change_basis.
Parameters: transform_op (callable) – A function which maps numpy.ndarray and sympy.MatrixBase instances to themselves, potentially with some transformation.
-
class
qubricks.operator.
OperatorSet
(components=None, defaults=None, **kwargs)[source]¶ Bases:
object
OperatorSet objects a container for multiple Operator objects, such that one can construct different combinations of the elements of the OperatorSet at runtime. This is useful, for example, if you have a Hamiltonian with various different couplings, and you want to consider various combinations of them.
Parameters: - components (dict of Operator instances or None) – A dictionary of Operator objects, indexed by a string representing the name of the corresponding Operator object.
- defaults – A list of component names which should be compiled into an operator when a custom list is not supplied. If defaults is None, then all components are used.
Type: list of str or None
- Creating an OperatorSet instance:
>>> ops = OperatorSet ( components = { 'op1': Operator(...), 'op2': Operator(...) } )
- Extracting Operator instances:
Usually, one wants to call OperatorSet objects, with a list of keys to be compiled into a single Operator object. e.g. operatorset(‘name1’,’name2’,...) . For example:
>>> ops('op1') # This is just op1 on its own >>> ops('op1','op2') # This is the sum of op1 and op2 >>> ops() # Same as above, since no defaults provided.
Individual components can also be accessed using:
operatorset['name']
.- Subclassing OperatorSet:
- To subclass OperatorSet simply override the init method to construct whichever Operators you desire. You should initialise OperatorSet.components to be a dictionary; but otherwise, there are no constraints. Note that you can add elements to an OperatorSet without subclassing it.
-
apply
(state, symbolic=False, left=True, params=None, components=None)[source]¶ This method applies the Operator.apply method from each of the stored Operators, and sums up their results. The only difference from the Operator.apply method is the components keyword, which allows you to specify which operators are used. If components is not specified, then the default components are used.
Parameters: - state (numpy.array or object) – An array with suitable dimensions for being pre- (or post-, if left is False) multipled by the Operator represented by this object.
- symbolic (bool) –
True
if multiplication should be done symbolically using sympy, andFalse
otherwise (uses numpy). - left (bool) –
True
if the state should be multiplied from the left; andFalse
otherwise. - params (dict) – A dictionary of parameter overrides.
- components (iterable) – A list of components to use.
-
class
qubricks.operator.
OrthogonalOperator
(components, parameters=None, basis=None, exact=False)[source]¶ Bases:
qubricks.operator.Operator
OrthogonalOperator is a subclass of Operator for representing Orthogonal matrices. The only difference is that the inversion process is simplified, using the result that the inverse of Q is simply its transpose.
Apart from the inversion operation, all other operations will result in a normal Operator object being returned.
StateOperator¶
-
class
qubricks.stateoperator.
StateOperator
(parameters=None, basis=None, **kwargs)[source]¶ Bases:
object
StateOperator objects are not to be confused with Operator objects. StateOperator objects can encode arbitrary operations on states; including those which cannot be described by a linear map. Often, but not always, the internal mechanisms of a StateOperator will use an Operator object. The StateOperator object itself is an abstract class, and must be subclassed before it is used. In order to conform to the expectations of the QuBricks framework, StateOperators should implement basis transformations and subspace restrictions.
Parameters: - parameters (Parameters) – A referenced to a Parameters instance, which can be shared among multiple objects. This is overridden when adding to a QuantumSystem instance, but is helpful for testing purposes.
- kwargs (dict) – Keyword arguments which are passed onto the StateOperator.init method, which must be implemented by subclasses.
- Subclassing StateOperator:
- A subclass of StateOperator must implement the following methods::
- And the following properties::
- for_state
- for_ensemble
- And may, if desired, implement::
For more documentation about what these methods should return, see the documentation below.
- Applying a StateOperator instance to a State:
StateOperator objects are applied to states by calling them with the state as a passed parameter. For example:
>>> stateoperator(state)
It is also possible to pass a parameter context. Often, such as when performing numerical integration, you want to treat time specially, and so the time can also be passed on its own.
>>> stateoperator(state, t=0, params=param_dict)
Parameters may be supplied in any format that is supported by the Parameters module.
Note
The integration time is passed by the integrator via t, and not as part of the parameter context.
-
Operator
(operator, basis=None, exact=False)[source]¶ This method is a shorthand for constructing Operator objects which refer to the same Parameters instance as this StateOperator.
Parameters: - components (Operator, dict, numpy.ndarray or sympy.MatrixBase) – Specification for Operator.
- basis (Basis or None) – The basis in which the Operator is represented.
- exact (bool) – True if Operator should maintain exact representations of numbers, and False otherwise.
If components is already an Operator object, it is returned with its Parameters reference updated to point the Parameters instance associated with this StateOperator. Otherwise, a new Operator is constructed according to the specifications, again with a reference to this StateOperator’s Parameters instance.
For more information, refer to the documentation for Operator.
-
basis
¶ A reference to the current Basis of the Operator; or None if it has no specified Basis.
-
change_basis
(basis=None, threshold=False)[source]¶ Returns a copy of this StateOperator object expressed in the specified basis. The behaviour of the threshold parameter is described in the Basis.transform documentation; but this allows elements which differ from zero only by numerical noise to be set to zero.
Parameters: - basis (Basis or None) – The basis in which the new StateOperator should be represented.
- threshold (bool or float) – Whether a threshold should be used to limit the effects of numerical noise (if boolean), or the threshold to use (if float). See Basis.transform for more information.
-
collapse
(*wrt, **params)[source]¶ This method is a stub to allow subclasses to simplify themselves when requested. If implemented, and Operators are used, the collapse method should be used on them also. See Operator.collapse for more information.
Note that unless this method is overridden, no simplification occurs.
-
connected
(*indices, **params)[source]¶ This method should return the list of basis state indices which would mix with the specified basis state indices indices under repeated operation of the StateOperator. See Operator.connected for more information.
-
for_ensemble
¶ Should be True if the StateOperator supports 2D ensemble operations; and False otherwise.
-
for_state
¶ Should be True if the StateOperator supports 1D vector operations; and False otherwise.
-
init
(**kwargs)[source]¶ This method is called when StateOperator subclasses are initialised, which allows subclasses to set themselves up as appropriate.
Parameters: kwargs (dict) – The keyword arguments passed to the StateOperator constructor.
-
is_linear
¶ Should be True if the StateOperator is linear. If so, the Integrator instance may apply the real and imaginary components separately (or any other linear breakdown of the state).
-
p
¶ Returns a reference to the internal Parameter instance.
Measurement(s) & MeasurementWrapper¶
-
class
qubricks.measurement.
Measurement
(*args, **kwargs)[source]¶ Bases:
object
A Measurement instance is an object which encodes the logic required to extract information from a QuantumSystem object. It specifies the algorithm to be performed to extract the measurement outcome, the type of the measurement results, and also provides methods to initialise and add results to storage when performing the same measurement iteratively. Measurement is an abstract class, and should be subclassed for each new class of measurements.
While Measurement objects can be used directly, they are typically used in conjunction with Measurements and MeasurementWrapper, as documented in those classes.
Any arguments and/or keyword arguments passed to the Measurement constructor are passed to Measurement.init.
- Subclassing Measurement:
- A subclass of Measurement must implement the following methods:
- init
- measure
- result_type
- result_shape
A subclass may also override the following methods to further customise behaviour:
- is_independent
- iterate_results_init
- iterate_results_add
- iterate_is_complete
- iterate_continue_mask
Documentation for these methods is provided below.
- Applying Measurement instances:
Although not normally used directly, you can use a Measurement instance directly on the results of an QuantumSystem integration, for example:
>>> measurement(data=system.integrate(...))
Calling a Measurement instance is an alias for the Measurement.measure method. If the measurement instance is configured to perform its own integration:
>>> measurement(times=..., initial=..., ...)
Note that if the measurement instance needs access to the QuantumSystem instance, you can setup the reference using:
>>> measurement.system = system
-
init
()[source]¶ This method should initialise the Measurement instance in whatever way is necessary to prepare the instance for use. Note that any arguments passed to the Measurement constructor will also be passed to this method. There is no restriction on the method signature for the init method.
-
is_independent
¶ True if this Measurement instance does all required integration internally (and so should not receive pre-computed integration data). False otherwise. The default implementation is False.
-
iterate_continue_mask
(results)[source]¶ This method returns a mask function (see MeasurementWrapper documentation), which in turn based on the results object (as initialised by iterate_results_init) returns True or False for a given set of indices indicating whether there already exists data for those indices.
Parameters: results (object) – The results storage object (see Measurement.iterate_results_init).
-
iterate_is_complete
(results)[source]¶ This method returns True when the results object is completely specified (results have been added for all indices; and False otherwise.
Parameters: results (object) – The results storage object (see Measurement.iterate_results_init).
-
iterate_results_add
(results=None, result=None, indices=None, params={})[source]¶ This method adds a measurement result result from Measurement.measure to the results object initialised in Measurement.iterate_results_init. It should put this result into storage at the appropriate location for the provided indices.
Parameters: - results (object) – The storage object in which to place the result (as from Measurement.iterate_results_init).
- result (object) – The result to be stored (as from Measurement.measure).
- indices (tuple) – The indices at which to store this result.
- params (dict) – The parameter context for this measurement result.
-
iterate_results_init
(ranges=[], shape=None, params={}, *args, **kwargs)[source]¶ This method is called by MeasurementWrapper.iterate_yielder to initialise the storage of the measurement results returned by this object. By default, this method returns a numpy array with dtype as specified by result_type and shape returned by result_shape, with all entries set to np.nan objects. If necessary, you can overload this method to provide a different storage container This is a generic initialisation for the Measurement object. It can be overloaded if necessary.
Parameters: - ranges – The range specifications provided to MeasurementWrapper.iterate_yielder.
- shape (tuple) – The shape of the resulting evaluated ranges.
- params (dict) – The parameter context of the ranges.
- args (tuple) – Any additional arguments passed to MeasurementWrapper.iterate_yielder.
- kwargs (dict) – Any additional keyword arguments passed to MeasurementWrapper.iterate_yielder.
-
measure
(data=None, params={}, int_kwargs={}, **kwargs)[source]¶ This method should return the value of a measurement as a numpy array with data type and shape as specified in result_type and result_shape respectively.
Note
It is possible to return types other than numpy array and still be compatible with iteration (see MeasurementWrapper) provided you overload the iterate_results_init and iterate_results_add methods.
Implementations of measure will typically be provided by integration data by a MeasurementWrapper instance (which will be a structured numpy array as returned by Integrator.integrate) as the value for the `data keyword. A consistent set of values for times and initial will also be passed as keywords inside int_kwargs.
Note
If an implementation of measure omits the data keyword, QuBricks assumes that all integration required by the measure operator will be performed internally. It can use the reference to a QuantumSystem instance at Measurement.system for this purpose. If the data keyword is present (for testing/etc), but pre-computed integration data is undesired, override the is_independent method to return True. If external data is required, then simply remove the default value of data.
Apart from the required keywords of data and params; any additional keywords can be specified. Refer to the documentation of MeasurementWrapper to see how their values will filter through to the various methods of QuBricks.
Parameters: - data (numpy.ndarray or None) – Data from a QuantumSystem.integrate call, or None.
- params (dict) – Parameter context to use during this measurement. Parameter types can be anything supported by Parameters.
- int_kwargs (dict) – Keyword arguments to be passed on to any integrator instances, which includes the times and initial states provided to MeasurementWrapper.integrate.
- kwargs (dict) – Any other keyword arguments not collected explicitly.
-
result_shape
(*args, **kwargs)[source]¶ This method should return a tuple describing the shape of the numpy array to be returned by Measurement.measure.
This method will receive all arguments and keyword arguments passed to iterate_results_init, where it is used to initialise the storage of measurement results.
-
result_type
(*args, **kwargs)[source]¶ This method should return an object suitable for use as the dtype argument in a numpy array constructor. Otherwise, no restrictions; other than that it must also agree with the data-type returned by Measurement.measure.
This method will receive all arguments and keyword arguments passed to iterate_results_init, where it is used to initialise the storage of measurement results.
-
system
¶ A reference to a QuantumSystem instance. If a system instance is not provided, and an attempt to access this property is made, a RuntimeException is raised.
You can specify a QuantumSystem using:
>>> measurement.system = system
-
class
qubricks.measurement.
MeasurementIterationResults
(ranges, ranges_eval, results, params={}, runtime=None, path=None, samplers={})[source]¶ Bases:
object
MeasurementIterationResults is class designed to store the results of measurements applied iteratively over a range of different values (see MeasurementWrapper.iterate_yielder). Apart from its role as a data structure, it also provides methods for saving and loading the data to/from disk.
Parameters: - ranges (dict or list of dict) – The specification of ranges passed ultimately to the Parameters instance.
- ranges_eval (numpy.ndarray) – The values of the parameters after evaluation from the above specification.
- results (dict) – A dictionary of measurement results, with keys of measurement names.
- runtime (float) – An optional number indicating in seconds the time taken to generate the results.
- path (str) – The location to use as a storage location by default.
- samplers (dict of callables) – A dictionary of named samplers (see parampy.Parameters.range) for future use with ranges, since functions cannot be serialised.
- Constructing a MeasurementIterationResults object:
Manually constructing a MeasurementIterationResults instance is unusual, since this is handled for you by the MeasurementWrapper iteration methods. However, this is possible using:
>>> results = MeasurementIterationResults(ranges=..., ranges_eval=..., results=..., runtime=1.2, path='data.dat', samplers=...
- Accessing results:
To access the data stored in a MeasurementIterationResults instance, simply access the relevant attributes. The available attributes are:
- ranges
- ranges_eval
- results
- runtime
- path
- samplers
Each of these attributes corresponds to the documented parameters described above.
For example:
>>> mresults = results.results['measurement_name']
Note that all of these attributes can be freely overridden. Check out the MeasurementIterationResults.update method for an alternative to updating these results.
-
continue_mask
(measurements={})[source]¶ This method provides a mask for the parampy.iteration.RangesIterator instance called in MeasurementWrapper.iterate_yielder. The provided mask calls the Measurement.iterate_continue_mask method with the appropriate results for each of the measurements provided in measurements.
Parameters: measurements (dict) – A dictionary of measurement objects with keys indicating their names.
-
is_complete
(measurements={})[source]¶ This method calls the Measurement.iterate_is_complete method with the appropriate results for each of the measurements provided. If False for any of these measurements, False is returned.
Parameters: measurements (dict) – A dictionary of measurement objects with keys indicating their names.
-
classmethod
load
(path, samplers={})[source]¶ This classmethod will load and populate a new MeasurementIterationResults object from previously saved data. If provided, samplers will be used to convert string names of samplers in the ranges to functions.
Parameters: For example:
>>> results = MeasurementIterationResults.load('data.dat')
-
classmethod
merge
(*paths, **kwargs)[source]¶ This classmethod will load the results from multiple MeasurementIterationResults objects and merge them into one; appending data along the axis specified.
Parameters: - paths (tuple) – A sequence of paths which can be loaded using MeasurementIterationResults.load, and which will then be merged along the specified axis into one MeasurementIterationResults.
- kwargs (dict) – A dictionary of options; in particular it must contain the axis along which to merge the data. It can also contain ‘samplers’ which is then passed to the MeasurementIterationResults.load method and MeasurementIterationResults constructor.
Example:
>>> MeasurementIterationResults.merge('data1.shelf', 'data2.shelf', 'data3.shelf', axis=2)
-
save
(path=None, samplers=None)[source]¶ This method will save this MeasurementIterationResults object to disk at the specified path, trading the sampler functions in the ranges attribute with their names extract from samplers (if possible), or by using their inspected name (using the __name__ attribute). The resulting file is a “shelf” object from the python shelve module.
Parameters: For example:
>>> results.save('data.dat')
-
update
(**kwargs)[source]¶ This method allows you to update the stored data of this MeasurementIterationResults instance. Simply call this method with keyword arguments of the relevant attributes. For example:
>>> results.update(results=..., path=..., ...)
Note that you can update multiple attributes at once. The one special argument is “runtime”, which will increment that attribute with the specified value, rather than replacing it. For example:
>>> results.runtime 231.211311 >>> results.update(runtime=2.2) >>> results.runtime 233.411311
-
class
qubricks.measurement.
MeasurementWrapper
(system, measurements={})[source]¶ Bases:
object
The MeasurementWrapper class wraps around one or more Measurement objects to provide a consistent API for performing (potentially) multiple measurements at once. There are also performance benefits to be had, since wherever possible integration results are shared between the Measurement instances.
Parameters: - system (QuantumSystem) – A QuantumSystem instance.
- measurements (dict) – A dictionary of Measurement objects indexed by a string name.
- Constructing MeasurementWrapper objects:
The syntax for creating a MeasurementWrapper object is:
>>> wrapper = MeasurementWrapper(system, {'name': NamedMeasurement, ...})
where NamedMeasurement is a Measurement instance.
- Adding Measurement objects:
- If you want to add additional Measurement objects after creating the MeasurementWrapper instance, use the add_measurements method. Refer to the documentation below for more information.
- Performing Measurements:
There are three basic procedures which you can use to perform measurements on the reference “system” QuantumSystem instance.
The first of these is MeasurementWrapper.on, which applies the measurement(s) to a pre-computed data. The second is MeasurementWrapper.integrate, which applies the measurement(s) to data computed on the fly. And the last is the iteration procedures: MeasurementWrapper.iterate, MeasurementWrapper.iterate_yielder, and MeasurementWrapper.iterate_to_file; each of which allows you to perform measurements over a range of parameter contexts.
Each of these methods is documented in more detail below.
-
add_measurements
(**measurements)[source]¶ This method adds named measurements to the MeasurementWrapper. The syntax for this is:
>>> wrapper.add_measurements(name=NamedMeasurement, ...)
where “name” is any valid measurement name, and NamedMeasurement is a Measurement instance.
-
integrate
(params={}, **kwargs)[source]¶ This method performs an integration of the QuantumSystem referenced when this object was constructed, and then calls Measurement.on on that data. If all Measurement objects hosted are “independent” (have Measurement.is_independent as True), then no integration is performed.
Parameters: - times (iterable) – Times for which to report the state during integration.
- initial (list) – Initial state vectors / ensembles for the integration. (See QuantumSystem.state.
- params – Parameter overrides to use during integration. (See parampy.Parameters documentation).
- kwargs (dict) – Additional keyword arguments to pass to QuantumSystem.integrate and Measurement.measure.
Note
Only keyword arguments prepended with ‘int_‘ are forwarded to
QuantumSystem.integrate, with the prefix removed. These keywords are also also passed to Measurement.measure in the int_kwargs dictionary.
For example:
>>> wrapper.integrate(times=['T'], initial=['logical0'])
-
iterate
(*args, **kwargs)[source]¶ This method is a wrapper around the Measurement.iterate_yielder method in the event that one only cares about the final result, and does not want to deal with interim results. This method simply waits until the iteration process is complete, and returns the last result.
All arguments and keyword arguments are passed to MeasurementWrapper.iterate_yielder.
-
iterate_to_file
(path, samplers={}, yield_every=60, *args, **kwargs)[source]¶ This method wraps around Measurement.iterate_yielder in order to continue a previous measurement collection process (if it did not finish successfully) and to iteratively write the most recent results to a file. This method modifies the default yield_every of the iterate_yielder method to 60 seconds, so that file IO is not the limiting factor of performance, and so that at most around a minute’s worth of processing is lost in the event that something goes wrong.
Parameters: - path (str) – The path at which to save results. If this file exists, attempts are made to continue the measurement acquisition.
- samplers (dict) – A dictionary of samplers to be used when loading and saving the MeasurementIterationResults object. (see MeasurementIterationResults.load and MeasurementIterationResults.save)
- yield_every (number or None) – The minimum time between attempts to save the results. (see iterate_yielder)
- args (tuple) – Additional arguments to pass to iterate_yielder.
- kwargs (dict) – Additional keyword arguments to pass to iterate_yielder.
Measurement.iterate_to_file saves the results of the Measurement.iterate method to a python shelve file at path; all other arguments are passed through to the Measurement.iterate method.
-
iterate_yielder
(ranges, yield_every=0, results=None, params={}, **kwargs)[source]¶ This method iterates over the possible Cartesian products of the parameter ranges provided, at each step running the MeasurementWrapper.integrate in the resulting parameter context. After every yield_every seconds, this method will flag that it needs to yield the results currently accumulated (as a MeasurementIterationResults object) when the next measurement result has finished computing. This means that you can, for example, progressively save (or plot) the results as they are taken. Note that if the processing of the results is slow, this can greatly increase the time it takes to finish the iteration.
Parameters: - ranges (list or dict) – A valid ranges specification (see parampy.iteration.RangesIterator)
- yield_every (number or None) – Minimum number of seconds to go without returning the next result. To yield the value after every successful computation, use yield_every=0 . If yield_every is None, results are returned only after every computation has succeeded. By default, yield_every = 0.
- results (MeasurementIterationResults) – Previously computed MeasurementIterationResults object to extend.
- params (dict) – Parameter overrides to use (see parampy.Parameters.range)
- kwargs (dict) – Additional keyword arguments to be passed to MeasurementWrapper.integrate (and also to Measurement.iterate_results_init.
Note that kwargs prefixed with “iter_” will be split out and passed as arguments to parampy.iteration.RangeIterator.
-
on
(data, **kwargs)[source]¶ This method applies the Measurement.measure method to data for every Measurement stored in this object. If there are two or more Measurement objects, this method returns a dictionary of Measurement.measure results; with keys being the measurement names. If there is only one Measurement object, the return value of Measurement.measure is returned.
Parameters: - data (numpy.ndarray) – Data from an QuantumSystem integration.
- kwargs (dict) – Additional kwargs to pass to Measurement.measure.
For example: >>> wrapper.on(data, mykey=myvalue)
Note that if data is not None, then initial and times are extracted from data, and passed to Measurement.measure in int_kwargs.
Also note that if a measurement has Measurement.is_independent being True, only the initial and times will be forwarded from data.
-
class
qubricks.measurement.
Measurements
(system)[source]¶ Bases:
object
Measurements is a designed to simplify the Measurement evaluation process by acting as a host for multiple named Measurement objects. This object is used as the measure attribute of QuantumSystem objects.
Parameters: system (QuantumSystem) – A QuantumSystem instance. - Constructing a Measurements object:
If you want to create a Measurements instance separate from the one hosted by QuantumSystem objects, use the following:
>>> measurements = Measurements(system)
- Adding and removing Measurement objects:
To add a Measurement object to a Measurements instance, you simply provide it a string name, and use (for example):
>>> measurements._add("name", NamedMeasurement)
where NamedMeasurement is a subclass of Measurement.
To remove a Measurement from Measurements, use:
>>> measurements._remove("name")
The underscores preceding these methods’ names are designed to prevent name clashes with potential Measurement names.
When a Measurement instance is added to Measurements, its internal “system” attribute is updated to point to the QuantumSystem used by Measurements.
- Extracting a Measurement object:
Once added to the Measurements object, a Measurement object can be accessed using attribute notation, or by calling the Measurements instance. For example:
>>> system.measure.name
Or to bundle multiple measurements up into the same evaluation:
>>> system.measure("measurement_1", "measurement_2", ...)
In both cases, the return type is not a Measurement instance, but rather a MeasurementWrapper instance, which can be used to perform the Measurement.measure operations in a simplified and consistent manner. See the MeasurementWrapper documentation for more information.
- Inspecting a Measurements instance:
To see a list of the names of measurements stored in a Measurements instance, you can use:
>>> measurements._names
To get a reference of the dictionary internally used by Measurements to store and retrieve hosted Measurement objects, use:
>>> measurements._measurements
Basis¶
-
class
qubricks.basis.
Basis
(dim=None, parameters=None, **kwargs)[source]¶ Bases:
object
A Basis instance describes a particular basis, and allows transformations of objects (such as `Operator`s) from one basis to another. A Basis is an abstract class, and must be subclassed to be useful.
Parameters: - dim (int or None) – The dimension of the basis. If not specified, the dimension will be extracted from the Operator returned by Basis.operator; except during Basis.init, where Basis.dim will return the raw value stored (e.g. None).
- parameters (parampy.Parameters) – A Parameters instance, if required.
- kwargs (dict) – Additional keyword arguments to pass to Basis.init.
- Subclassing Basis:
- Subclasses of Basis must implement the following methods, which function according to their respective documentation below: - init - operator Subclasses may optionally implement: - state_info - state_toString - state_fromString - state_latex These latter methods are used to allow convenient conversion of strings to states and also later representation of states as strings/LaTeX. Otherwise, these methods are not required. Since they are not used except when the user desires to change the state’s representation, the implementer has a lot of freedom about the way these functions work, and what they return. The documentation for these methods indicates the way in which the original author intended for them to function.
-
Operator
(components, basis=None, exact=False)[source]¶ This method is a shorthand for constructing Operator objects which refer to the same Parameters instance as this Basis instance.
Parameters: - components (Operator, dict, numpy.ndarray or sympy.MatrixBase) – Specification for Operator.
- basis (Basis or None) – The basis in which the Operator is represented.
- exact (bool) – True if Operator should maintain exact representations of numbers, and False otherwise.
If components is already an Operator object, it is returned with its Parameters reference updated to point the Parameters instance associated with this Basis instance. Otherwise, a new Operator is constructed according to the specifications, again with a reference to this Basis’s Parameters instance.
For more information, refer to the documentation for Operator.
-
dim
¶ The dimension of the basis; or equivalently, the number of basis states.
-
init
(**kwargs)[source]¶ This method should do whatever is necessary to prepare the Basis instance for use. When this method is called by the Python __init__ method, you can use Basis.dim to access the raw value of dim. If dim is necessary to construct the operator, and it is not set, this method should raise an exception. All keyword arguments except dim and parameters passed to the Basis instance constructor will also be passed to this method.
-
operator
¶ This method should return a two dimensional Operator object, with basis states as columns. The Operator object should use the Parameters instance provided by the Basis instance. The simplest way to ensure this is to use the Basis.Operator method.
-
p
¶ A reference to the Parameters instance used by this object.
-
state_fromString
(string, params={})[source]¶ This method (if implemented) should return the state as a numerical array that is represented as a string in string. Calling basis.state_toString should then return the same (or equivalent) string representation.
Parameters: - string – A string representation of a state.
- params (dict) – A dictionary of parameter overrides. (see parampy.Parameters)
-
state_fromSymbolic
(expr)[source]¶ This method converts a sympy representation of a quantum state into an array or vector (as used by QuBricks). It uses internally Basis.state_fromString to recognise ket and bra names, and to substitute them appropriately with the right state vectors.
Warning
Support for conversion from symbolic representations is not fully baked, but seems to work reasonably well.
-
state_info
(state, params={})[source]¶ This method (if implemented) should return a dictionary with more information about the state provided. There are no further constraints upon what might be returned.
Parameters: - state (str or iterable) – The state about which information should be returned.
- params (dict) – A dictionary of parameter overrides. (see parampy.Parameters)
-
state_latex
(state, params={})[source]¶ This method (if implemented) should return string that when compiled by LaTeX would represent the state.
Parameters: - state (iterable) – The state which should be represented as a string.
- params (dict) – A dictionary of parameter overrides. (see parampy.Parameters)
-
state_toString
(state, params={})[source]¶ This method (if implemented) should return a string representation of the provided state, which should then be able to be converted back into the same state using Basis.state_fromString.
Parameters: - state (iterable) – The state which should be represented as a string.
- params (dict) – A dictionary of parameter overrides. (see parampy.Parameters)
-
state_toSymbolic
(state)[source]¶ This method is a stub, and may be implemented in the future to provide the logical inverse of Basis.state_fromSymbolic.
-
states
(**params)[source]¶ This method returns the basis states (columns of the Operator returned by basis.operator) as a list. The Operator is first evaluated with the parameter overrides in params.
Parameters: params (dict) – A dictionary of parameter overrides. (see parampy.Parameters)
-
transform
(state, inverse=False, threshold=False, params={})[source]¶ This method allows one to transform states from the standard basis to this basis; or, if the inverse flag is provided, to transform from this basis to the standard basis. This is chained in the Basis.transform_to and Basis.transform_from methods to convert states between bases. State objects can be Operator or numpy array objects; and can be one or two dimensional. The basis states are evaluated in the parameter context specified in params before being used in this method.
This method can automatically try to set elements in the transformed object that are different from zero by some small amount to zero, in the hope of ignoring numerical error. If threshold is False, no attempts to clean the transformed state are made. If a numerical threshold is provided, any elements of the resulting transformed state with amplitude less than the supplied value will be set to zero. If threshold is set to True, the transformation operation attempts to determine the threshold automatically. This automatic algorithm looks for the smallest entry in Basis.operator and then multiplies it by 10**-8. This value is then used as the threshold. One should use this feature with caution.
Parameters: - state (1D or 2D Operator or numpy.ndarray) – The state to be transformed.
- inverse (bool) – True for transformation from this basis to the standard basis, and False for transformation to this basis from the standard basis.
- threshold (bool or float) – True or False to specify that the threshold should be automatically determined or not used respectively. If a float is provided, that value is used as the threshold.
- params (dict) – The parameter overrides to use during the transformation (see Operator).
-
transform_from
(state, basis=None, threshold=False, params={})[source]¶ This method transforms the given state to this basis from the basis provided in basis (which must be a Basis instance). If basis is note provided, the standard basis is assumed.
Parameters: - state (1D or 2D Operator or numpy.ndarray) – The state to be transformed.
- basis (Basis or None) – The basis into which the state should be transformed.
- threshold (bool or float) – True or False to specify that the threshold should be automatically determined or not used respectively. If a float is provided, that value is used as the threshold.
- params (dict) – The parameter overrides to use during the transformation (see Operator).
-
transform_op
(basis=None, inverse=False, threshold=False, params={})[source]¶ This method returns a function which can be used to transform any 1D or 2D Operator or numpy array to (from) this basis from (to) the basis provided in basis, if inverse is False (True). If basis is not provided, the standard basis is assumed.
Parameters: - state (1D or 2D Operator or numpy.ndarray) – The state to be transformed.
- basis (Basis or None) – The basis into which the state should be transformed.
- inverse (bool) – True for transformation from this basis to the basis provided, and False for transformation to this basis from the the basis provided.
- threshold (bool or float) – True or False to specify that the threshold should be automatically determined or not used respectively. If a float is provided, that value is used as the threshold.
- params (dict) – The parameter overrides to use during the transformation (see Operator).
For example:
>>> f = Basis.transform_op() >>> state_transformed = f(state)
-
transform_to
(state, basis=None, threshold=False, params={})[source]¶ This method transforms the given state from this basis to the basis provided in basis (which must be a Basis instance). If basis is note provided, the standard basis is assumed.
Parameters: - state (1D or 2D Operator or numpy.ndarray) – The state to be transformed.
- basis (Basis or None) – The basis into which the state should be transformed.
- threshold (bool or float) – True or False to specify that the threshold should be automatically determined or not used respectively. If a float is provided, that value is used as the threshold.
- params (dict) – The parameter overrides to use during the transformation (see Operator).
-
class
qubricks.basis.
QubricksBasis
[source]¶ Bases:
sympy.physics.quantum.operator.Operator
This object is used internally to support symbolic representations of states.
-
default_assumptions
= {'nonzero': True, 'prime': False, 'commutative': False, 'nonpositive': False, 'composite': False, 'positive': False, 'odd': False, 'noninteger': False, 'negative': False, 'nonnegative': False, 'algebraic': False, 'zero': False, 'complex': False, 'rational': False, 'real': False, 'integer': False, 'imaginary': False, 'transcendental': False, 'even': False, 'irrational': False}¶
-
is_algebraic
= False¶
-
is_commutative
= False¶
-
is_complex
= False¶
-
is_composite
= False¶
-
is_even
= False¶
-
is_imaginary
= False¶
-
is_integer
= False¶
-
is_irrational
= False¶
-
is_negative
= False¶
-
is_noninteger
= False¶
-
is_nonnegative
= False¶
-
is_nonpositive
= False¶
-
is_nonzero
= True¶
-
is_odd
= False¶
-
is_positive
= False¶
-
is_prime
= False¶
-
is_rational
= False¶
-
is_real
= False¶
-
is_transcendental
= False¶
-
is_zero
= False¶
-
-
class
qubricks.basis.
QubricksBra
[source]¶ Bases:
sympy.physics.quantum.state.Bra
This object is used to represent states analytically.
For example:
>>> bra = QubricksBra('0')
These objects then obey standard arithmetic, for example:
>>> 2*bra 2<0|
You can convert from a symbolic representation of states to a QuBricks array using Basis.state_fromSymbolic.
-
default_assumptions
= {'nonzero': True, 'prime': False, 'commutative': False, 'nonpositive': False, 'composite': False, 'positive': False, 'odd': False, 'noninteger': False, 'negative': False, 'nonnegative': False, 'algebraic': False, 'zero': False, 'complex': False, 'rational': False, 'real': False, 'integer': False, 'imaginary': False, 'transcendental': False, 'even': False, 'irrational': False}¶
-
is_algebraic
= False¶
-
is_commutative
= False¶
-
is_complex
= False¶
-
is_composite
= False¶
-
is_even
= False¶
-
is_imaginary
= False¶
-
is_integer
= False¶
-
is_irrational
= False¶
-
is_negative
= False¶
-
is_noninteger
= False¶
-
is_nonnegative
= False¶
-
is_nonpositive
= False¶
-
is_nonzero
= True¶
-
is_odd
= False¶
-
is_positive
= False¶
-
is_prime
= False¶
-
is_rational
= False¶
-
is_real
= False¶
-
is_transcendental
= False¶
-
is_zero
= False¶
-
-
class
qubricks.basis.
QubricksKet
[source]¶ Bases:
sympy.physics.quantum.state.Ket
This object is used to represent states analytically.
For example:
>>> ket = QubricksKet('0')
These objects then obey standard arithmetic, for example:
>>> 2*ket 2|0>
You can convert from a symbolic representation of states to a QuBricks array using Basis.state_fromSymbolic.
-
default_assumptions
= {'nonzero': True, 'prime': False, 'commutative': False, 'nonpositive': False, 'composite': False, 'positive': False, 'odd': False, 'noninteger': False, 'negative': False, 'nonnegative': False, 'algebraic': False, 'zero': False, 'complex': False, 'rational': False, 'real': False, 'integer': False, 'imaginary': False, 'transcendental': False, 'even': False, 'irrational': False}¶
-
is_algebraic
= False¶
-
is_commutative
= False¶
-
is_complex
= False¶
-
is_composite
= False¶
-
is_even
= False¶
-
is_imaginary
= False¶
-
is_integer
= False¶
-
is_irrational
= False¶
-
is_negative
= False¶
-
is_noninteger
= False¶
-
is_nonnegative
= False¶
-
is_nonpositive
= False¶
-
is_nonzero
= True¶
-
is_odd
= False¶
-
is_positive
= False¶
-
is_prime
= False¶
-
is_rational
= False¶
-
is_real
= False¶
-
is_transcendental
= False¶
-
is_zero
= False¶
-
strlabel
¶
-
Integrator¶
-
class
qubricks.integrator.
Integrator
(identifier=None, initial=None, t_offset=0, operators=None, parameters=None, params={}, error_rel=1e-08, error_abs=1e-08, time_ops={}, progress=False, **kwargs)[source]¶ Bases:
object
Integrator instances perform a numerical integration on arbitrary initial states using StateOperator objects to describe the instantaneous derivative. It is itself an abstract class, which must be subclassed. This allows the separation of logic from actual integration machinery.
Parameters: - identifier (object) – An object to identify this integrator from others. Can be left unspecified.
- initial (list/tuple of numpy.arrays) – A sequence of states/ensembles to use as initial states in the integration.
- t_offset (object) – Normally integration starts from t=0. Use this to specify a time offset. Can be any value understood by a Parameters instance.
- parameters (Parameters or None) – A Parameters instance for Integrator to use.
- params (dict) – Parameter overrides to use during when evaluating StateOperator objects.
- error_rel (float) – The maximum relative error allowable.
- error_abs (float) – The maximum absolute error allowable.
- time_ops (dict) – A dictionary of StateOperator objects to be applied at the time indicated by their index (which can be any object understood by Parameters).
- progress (bool or IntegratorCallback) – True if progress should be shown using the fallback callback, False if not, or and IntegratorCallback instance. This is used to report integrator progress.
- kwargs – Additional keyword arguments to pass to the _integrator method.
- Subclassing Integrator:
- Subclasses of Integrator must implement the following methods:
The documentation for these methods is available using:
>>> help(Integrator.<name of function>)
Their documentation will not appear in a complete API listing because they are private methods.
-
add_operator
(operator)[source]¶ This method appends the provided StateOperator to the list of operators to be used during integrations.
Parameters: operator (StateOperator) – The operator to add to the list of operators contributing to the instantaneous derivative.
-
add_time_op
(time, time_op)[source]¶ This method adds a time operator time_op at time time. Note that there can only be one time operator for any given time. A “time operator” is just a StateOperator that will be applied at a particular time. Useful in constructing ideal pulse sequences.
Parameters: - time (object) – Time can be either a float or object interpretable by a Parameters instance.
- time_op (StateOperator) – The StateOperator instance to be applied at time time.
-
error_abs
¶ The maximum absolute error permitted in the integrator. This can be set using:
>>> integrator.error_abs = <float>
-
error_rel
¶ The maximum relative error permitted in the integrator. This can be set using:
>>> integrator.error_rel = <float>
-
extend
(times=None, **kwargs)[source]¶ This method extends an integration with returned states for the times of interest specified. This method requires that Integrator.start has already been called at least once, and that at least some of the times in times are after the latest times already integrated. Any previous times are ignored. Any additional keyword arguments are passed to the _integrate method. See the documentation for your Integrator instance for more information.
Parameters: - times (iterable) – A sequence of times, which can be any objected understood by Parameters. Should all be larger than the last time of the previous results.
- kwargs (dict) – Additional keyword arguments to send to the integrator.
-
get_operators
(indices=None)[source]¶ This method returns the operators of Integrator.operators restricted to the indicies specified (using StateOperator.restrict).
This is used internally by Integrator to optimise the integration process (by restricting integration to the indices which could possibly affect the state).
Parameters: indicies (interable of int) – A sequence of basis indices.
-
get_progress_callback
()[source]¶ This method returns the IntegratorCallback object that will be used by Integrator. Note that if a callback has not been specified, and Integrator.progress_callback is False, then an impotent IntegratorCallback object is returned, which has methods that do nothing when called.
-
get_time_ops
(indices=None)[source]¶ This method returns the “time operators” of Integrator.time_ops restricted to the indicies specified (using StateOperator.restrict).
This is used internally by Integrator to optimise the integration process (by restricting integration to the indices which could possibly affect the state).
Parameters: indicies (interable of int) – A sequence of basis indices.
-
initial
¶ The initial state. Ignored in Integrator.extend. Can be set using:
>>> integrator.initial = <list of states>
Each state will be converted to a complex numpy array if it is not already.
-
int_kwargs
¶ A reference to the dictionary of extra keyword arguments to pass to the _integrator initialisation method; which in turn can use these keyword arguments to initialise the integration.
-
operators
¶ A reference to the list of operators (each of which is a StateOperator) used internally. To add operators you can directly add to this list, or use (much safer):
>>> integrator.operators = [<StateOperator>, <StateOperator>, ...]
Or, alternatively:
>>> integrator.add_operator( <StateOperator> )
-
operators_linear
¶ True if all provided operators are linear, and False otherwise. Mainly used by Integrator subclasses to optimise their algorithms.
-
p
¶ A reference to the Parameters instance used by this object. This reference can be updated using:
>>> integrator.p = <Parameters instance>
-
params
¶ A reference to the parameter overrides to be used by the StateOperator objects used by Integrator. The parameter overrides can be set using:
>>> integrator.params = { .... }
See parampy.Parameters for more information about parameter overrides.
-
progress_callback
¶ The currently set progress callback. This can be True, in which case the default fallback callback is used; False, in which case the callback is disabled; or a manually created instance of IntegratorCallback. To retrieve the IntegratorCallback that will be used (including the fallback), use Integrator.get_progress_callback.
The progress callback instance can be set using:
>>> integrator.progress_callback = <True, False, or IntegratorCallback instance>
-
reset
()[source]¶ This method resets the internal stored Integrator.results to None, effectively resetting the Integrator object to its pre-integration status.
>>> integrator.reset()
-
results
¶ The currently stored results. Used to continue integration in Integrator.extend. While it is possible to overwrite the results, the new value is not checked, and care should be taken.
>>> integrator.results = <valid results object>
-
start
(times=None, **kwargs)[source]¶ This method starts an integration with returned states for the times of interest specified. Any additional keyword arguments are passed to the _integrate method. See the documentation for your Integrator instance for more information.
Parameters: - times (iterable) – A sequence of times, which can be any objected understood by Parameters.
- kwargs (dict) – Additional keyword arguments to send to the integrator.
-
t_offset
¶ The initial time to use in the integration. Ignored in Integrator.extend. Can be set using:
>>> integrator.t_offset = <time>
-
time_ops
¶ A reference to the dictionary of time operators. Can be updated directly by adding to the dictionary, or (much more safely) using:
>>> self.time_ops = {'T': <StateOperator>, ...}
The above is shorthand for:
>>> for time, time_op in {'T': <StateOperator>, ...}: self.add_time_op(time, time_op)