pyriemann.utils.mean.
mean_wasserstein
(covmats, tol=0.001, maxiter=50, init=None, sample_weight=None)[source]¶Return the mean covariance matrix according to the wasserstein metric.
This is an iterative procedure where the update is [1]:
with \(\mathbf{K} = \mathbf{C}^{1/2}\).
Parameters: |
|
---|---|
Returns: | the mean covariance matrix |
References
[1] Barbaresco, F. “Geometric Radar Processing based on Frechet distance: Information geometry versus Optimal Transport Theory”, Radar Symposium (IRS), 2011 Proceedings International.