pyriemann.utils.geodesic.geodesic_riemann

pyriemann.utils.geodesic.geodesic_riemann(A, B, alpha=0.5)[source]

Return the matrix at the position alpha on the riemannian geodesic between A and B :

\[\mathbf{C} = \mathbf{A}^{1/2} \left( \mathbf{A}^{-1/2} \mathbf{B} \mathbf{A}^{-1/2} \right)^\alpha \mathbf{A}^{1/2}\]

C is equal to A if alpha = 0 and B if alpha = 1

Parameters:
  • A – the first coavriance matrix
  • B – the second coavriance matrix
  • alpha – the position on the geodesic
Returns:

the covariance matrix