Bases: pycast.common.pycastobject.PyCastObject
Baseclass for all optimization methods.
Initializes the optimization method.
Parameters: |
|
---|---|
Raise: | Raises a TypeError if errorMeasureClass is not a valid class. Valid classes are derived from pycast.errors.BaseErrorMeasure. |
Raise: | Raises a ValueError if precision is not in [-7, 0]. |
Runs the optimization on the given TimeSeries.
Parameters: |
|
---|---|
Returns: | Returns the optimized forecasting method with the smallest error. |
Return type: | (BaseForecastingMethod, Dictionary) |
Raise: | Raises a ValueError ValueError if no forecastingMethods is empty. |
Bases: pycast.optimization.baseoptimizationmethod.BaseOptimizationMethod
Implements the grid search method for parameter optimization.
GridSearch is the brute force method.
Generator for a specific parameter of the given forecasting method.
Parameters: |
|
---|---|
Returns: | Creates a generator used to iterate over possible parameters. |
Return type: | generator |
The optimization loop.
This function is called recursively, until all parameter values were evaluated.
Parameters: |
|
---|---|
Returns: | Returns a list containing a BaseErrorMeasure instance as defined in BaseOptimizationMethod.__init__() and the forecastingMethods parameter. |
Return type: | list |
Runs the optimization of the given TimeSeries.
Parameters: |
|
---|---|
Returns: | Returns the optimized forecasting method, the corresponding error measure and the forecasting methods parameters. |
Return type: | [BaseForecastingMethod, BaseErrorMeasure, Dictionary] |
Raise: | Raises a ValueError ValueError if no forecastingMethods is empty. |
Optimizes the parameters for the given timeSeries and forecastingMethod.
Parameters: |
|
---|---|
Returns: | Returns a tuple containing only the smallest BaseErrorMeasure instance as defined in BaseOptimizationMethod.__init__() and the forecastingMethods parameter. |
Return type: | tuple |