prob140.MarkovChain.empirical_distribution¶
-
MarkovChain.
empirical_distribution
(starting_condition, n, repetitions)[source]¶ Finds the empirical distribution
Parameters: starting_condition : state or distribution
Starting state or distribution of starting state
n : int
number of steps
repetitions : int
number of repetitions
Returns: Table
Distribution after n steps over a certain number of repetitions
Examples
>>> mc = Table().states(make_array("A", "B")).transition_probability(make_array(0.5, 0.5, 0.3, 0.7)).toMarkovChain() >>> start = Table().states(make_array("A", "B")).probability(make_array(.8, .2)) >>> mc.empirical_distribution(start, 10, 100) Value | Proportion A | 0.4 B | 0.6