prob140.MarkovChain.distribution¶
-
MarkovChain.
distribution
(starting_condition, n)[source]¶ Finds the distribution of states after n steps given a starting condition
Parameters: starting_condition : state or Distribution
The initial distribution or the original state
n : integer
Number of transition steps
Returns: Table
Shows the distribution after n steps
Examples
>>> mc = Table().states(make_array("A", "B")).transition_probability(make_array(0.5, 0.5, 0.3, 0.7)).toMarkovChain()
>>> start = Table().states(make_array("A", "B")).probability(make_array(0.8, 0.2))
>>> mc.distribution(start, 0)
State | Probability
A | 0.8
B | 0.2
>>> mc.distribution(start, 2)
State | Probability
State | Probability
A | 0.392
B | 0.608
>>> mc.distribution(start, 10000)
State | Probability
A | 0.375
B | 0.625