plotpy.pyplot¶
The pyplot module provides an interactive plotting interface similar to Matplotlib‘s, i.e. with MATLAB-like syntax.
The plotpy.pyplot
module was designed to be as close as possible
to the matplotlib.pyplot
module, so that one could easily switch
between these two modules by simply changing the import statement. Basically,
if plotpy does support the plotting commands called in your script, replacing
import matplotlib.pyplot
by import plotpy.pyplot
should suffice, as
shown in the following example:
Simple example using matplotlib:
import matplotlib.pyplot as plt import numpy as np x = np.linspace(-10, 10) plt.plot(x, x**2, 'r+') plt.show()Switching from matplotlib to plotpy is trivial:
import plotpy.pyplot as plt # only this line has changed! import numpy as np x = np.linspace(-10, 10) plt.plot(x, x**2, 'r+') plt.show()
Examples¶
>>> import numpy as np
>>> from plotpy.pyplot import * # ugly but acceptable in an interactive session
>>> ion() # switching to interactive mode
>>> x = np.linspace(-5, 5, 1000)
>>> figure(1)
>>> subplot(2, 1, 1)
>>> plot(x, np.sin(x), "r+")
>>> plot(x, np.cos(x), "g-")
>>> errorbar(x, -1+x**2/20+.2*np.random.rand(len(x)), x/20)
>>> xlabel("Axe x")
>>> ylabel("Axe y")
>>> subplot(2, 1, 2)
>>> img = np.fromfunction(lambda x, y: np.sin((x/200.)*(y/200.)**2), (1000, 1000))
>>> xlabel("pixels")
>>> ylabel("pixels")
>>> zlabel("intensity")
>>> gray()
>>> imshow(img)
>>> figure("plotyy")
>>> plotyy(x, np.sin(x), x, np.cos(x))
>>> ylabel("sinus", "cosinus")
>>> show()
Reference¶
-
plotpy.pyplot.
show
(mainloop=True)[source]¶ Show all figures and enter Qt event loop This should be the last line of your script
-
plotpy.pyplot.
subplot
(n, m, k)[source]¶ Create a subplot command
Example:
import numpy as np x = np.linspace(-5, 5, 1000) figure(1) subplot(2, 1, 1) plot(x, np.sin(x), "r+") subplot(2, 1, 2) plot(x, np.cos(x), "g-") show()
-
plotpy.pyplot.
yreverse
(reverse)[source]¶ Set y-axis direction of increasing values
- reverse = False (default)
- y-axis values increase from bottom to top
- reverse = True
- y-axis values increase from top to bottom
-
plotpy.pyplot.
savefig
(fname, format=None, draft=False)[source]¶ Save figure
Currently supports PDF and PNG formats only
-
plotpy.pyplot.
plot
(*args, **kwargs)[source]¶ Plot curves
Example:
import numpy as np x = np.linspace(-5, 5, 1000) plot(x, np.sin(x), "r+") plot(x, np.cos(x), "g-") show()
-
plotpy.pyplot.
plotyy
(x1, y1, x2, y2)[source]¶ Plot curves with two different y axes
Example:
import numpy as np x = np.linspace(-5, 5, 1000) plotyy(x, np.sin(x), x, np.cos(x)) ylabel("sinus", "cosinus") show()
-
plotpy.pyplot.
semilogx
(*args, **kwargs)[source]¶ Plot curves with logarithmic x-axis scale
Example:
import numpy as np x = np.linspace(-5, 5, 1000) semilogx(x, np.sin(12*x), "g-") show()
-
plotpy.pyplot.
semilogy
(*args, **kwargs)[source]¶ Plot curves with logarithmic y-axis scale
Example:
import numpy as np x = np.linspace(-5, 5, 1000) semilogy(x, np.sin(12*x), "g-") show()
-
plotpy.pyplot.
loglog
(*args, **kwargs)[source]¶ Plot curves with logarithmic x-axis and y-axis scales
Example:
import numpy as np x = np.linspace(-5, 5, 1000) loglog(x, np.sin(12*x), "g-") show()
-
plotpy.pyplot.
errorbar
(*args, **kwargs)[source]¶ Plot curves with error bars
Example:
import numpy as np x = np.linspace(-5, 5, 1000) errorbar(x, -1+x**2/20+.2*np.random.rand(len(x)), x/20) show()
-
plotpy.pyplot.
hist
(data, bins=None, logscale=None, title=None, color=None)[source]¶ Plot 1-D histogram
Example:
from numpy.random import normal data = normal(0, 1, (2000, )) hist(data) show()
-
plotpy.pyplot.
imshow
(data, interpolation=None, mask=None)[source]¶ Display the image in data to current axes interpolation: ‘nearest’, ‘linear’ (default), ‘antialiasing’
Example:
import numpy as np x = np.linspace(-5, 5, 1000) img = np.fromfunction(lambda x, y: np.sin((x/200.)*(y/200.)**2), (1000, 1000)) gray() imshow(img) show()