Top

pcr.aes module

Advanced Encryption Standard - Block Cipher

# Copyright (c) 2013 Stefano Palazzo <stefano.palazzo@gmail.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

''' Advanced Encryption Standard - Block Cipher '''


class AES(object):

    # the block size  of AES is always 16
    # bytes, no matter what the key size is.
    block_size = 16

    # lookup talbe for the rijndael s-box
    sbox = [
        0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67,
        0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59,
        0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7,
        0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1,
        0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05,
        0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83,
        0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29,
        0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
        0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa,
        0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,
        0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc,
        0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
        0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19,
        0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee,
        0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49,
        0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
        0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4,
        0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6,
        0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70,
        0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9,
        0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e,
        0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1,
        0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0,
        0x54, 0xbb, 0x16]

    # lookup table for the inverse rijndael s-box
    rsbox = [
        0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3,
        0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f,
        0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54,
        0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b,
        0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24,
        0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8,
        0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d,
        0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
        0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab,
        0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3,
        0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1,
        0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41,
        0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6,
        0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9,
        0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d,
        0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
        0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0,
        0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07,
        0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60,
        0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f,
        0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5,
        0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b,
        0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55,
        0x21, 0x0c, 0x7d]

    # lookup table for r-con (n**2 in rijndaels finite filed GF(2^8)
    rcon = [
        0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
        0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97,
        0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72,
        0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66,
        0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
        0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d,
        0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
        0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61,
        0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
        0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40,
        0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc,
        0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5,
        0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a,
        0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d,
        0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c,
        0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
        0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4,
        0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
        0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08,
        0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
        0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d,
        0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2,
        0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74,
        0xe8, 0xcb]

    def __init__(self):
        pass

    @staticmethod
    def xor(a, b):
        ''' bitwise xor on equal length bytearrays '''
        return bytearray(i ^ j for i, j in zip(a, b))

    @staticmethod
    def rotate(word):
        ''' rotate a sequence of bytes eight bits to the left '''
        return word[1:] + word[:1]

    def rijndael_key_schedule(self, key):

        def rijndael_key_schedule_core(key_word, rcon_iteration):

            # rotate eight bits to the left:
            key_word = self.rotate(key_word)
            # apply the s-box to all 4 bytes:
            key_word = bytearray(self.sbox[i] for i in key_word)
            # xor the first byte with the rcon value for the current iteration
            key_word[0] = key_word[0] ^ self.rcon[rcon_iteration]

            return key_word

        # define constants for the length of the key
        # and length of the expanded key, n and b:
        if len(key) == 16:
            n, b = 16, 176
        elif len(key) == 24:
            n, b = 24, 208
        elif len(key) == 32:
            n, b = 32, 240
        else:
            raise ValueError("key must be 16, 24 or 32 bytes long")

        # the expanded key has the length b, and it's
        # first n bytes are the encryption key itself:
        expanded_key = bytearray(b)
        expanded_key[:len(key)] = key

        current_size = len(key)
        rcon_iteration = 1

        while current_size < b:
            # adding 4 bytes to the expanded key, starting
            # with the value of the previous 4 bytes in the
            # expanded key:

            # expanded_key is the expanded key, cs is the current size of it

            # t is the previous 4 bytes in the expanded key:
            t = expanded_key[current_size - 4:current_size]

            # perform the key schedule core on t:
            t = rijndael_key_schedule_core(t, rcon_iteration)
            rcon_iteration += 1
            # exclusive-or t with the 4 bytes before the expanded key
            # and make that the next 4 bytes of the expanded key:
            expanded_key[current_size:current_size + 4] = self.xor(
                expanded_key[current_size - n:current_size - n + 4], t)
            current_size += 4

            for i in range(3):
                t = expanded_key[current_size - 4:current_size]  # 1
                expanded_key[current_size:current_size + 4] = self.xor(
                    expanded_key[current_size - n:current_size - n + 4], t)
                current_size += 4

            if n == 32:  # if we're generating a 256 bit key
                t = expanded_key[current_size - 4:current_size]  # 1
                # run each of the 4 bytes through the rijdael s-box:
                t = bytearray(self.sbox[i] for i in t)
                expanded_key[current_size:current_size + 4] = self.xor(
                    expanded_key[current_size - n:current_size - n + 4], t)
                current_size += 4

            # if we're generating a 128 bit key, don't do the next step,
            # do it 2 times for a 192 bit key, 3 times for a 256 bit key:
            for i in range(0 if n == 16 else 2 if n == 24 else 3):
                t = expanded_key[current_size - 4:current_size]  # 1
                expanded_key[current_size:current_size + 4] = self.xor(
                    expanded_key[current_size - n:current_size - n + 4], t)
                current_size += 4

        # because of the last step, the expanded key might be too long:
        return expanded_key[:b]

    def encrypt(self, data, key):
        return self.start(data, key, inverted=False)

    def decrypt(self, data, key):
        return self.start(data, key, inverted=True)

    def start(self, data, key, inverted=False):
        # determine the number of rounds and raise
        # an exception for wrongly sized keys:
        if len(key) == 16:
            n_rounds = 10
        elif len(key) == 24:
            n_rounds = 12
        elif len(key) == 32:
            n_rounds = 14
        else:
            raise ValueError("key must be 16, 24 or 32 bytes long")
        # empty bytearrays for our current block and the result,
        # bytearrays are the mutable version of <type 'bytes'>:
        block, result = bytearray(16), bytearray(16)

        # get the expanded key from the rijndael key schedule:
        expanded_key = self.rijndael_key_schedule(key)

        # aes operates on a 4 by 4 matrix, the state, which is
        # stored as a flat array in column-major order, such that
        # [[1, 2, 3], [4, 5, 6]] becomes [1, 4, 2, 5, 3, 6]:
        for i in range(4):
            for j in range(4):
                block[(i + (j * 4))] = data[(i * 4) + j]

        # initial round and start of the aes process:
        block = self.main(block, expanded_key, n_rounds, inverted)

        # here we turn the flat matrix back into a linear array
        # from column-major order:
        for k in range(4):
            for l in range(4):
                result[(k * 4) + l] = block[(k + (l * 4))]

        # return the result as an immutable bytes object:
        return bytes(result)

    def get_round_key(self, expanded_key, kp):
        round_key = bytearray(16)
        for i in range(4):
            for j in range(4):
                round_key[j * 4 + i] = expanded_key[kp + i * 4 + j]
        return round_key

    def add_round_key(self, state, expanded_key, kp):
        # xor the state with the round key
        return self.xor(state, self.get_round_key(expanded_key, kp))

    def main(self, state, expanded_key, n_rounds, inverted=False):

        # i is used as the round key pointer (kp)
        # and the iteration is reversed on decryption

        # initial round:
        x = (16 * n_rounds) if inverted else 0
        state = self.add_round_key(state, expanded_key, x)

        # normal rounds:
        for i in (range(n_rounds - 1, 0, -1)
                  if inverted else range(1, n_rounds)):
            if inverted:
                state = self.shift_rows(state, inverted)
                state = self.sub_bytes(state, inverted)
                state = self.add_round_key(state, expanded_key, 16 * i)
                state = self.mix_columns(state, inverted)
            else:
                state = self.sub_bytes(state, inverted)
                state = self.shift_rows(state, inverted)
                state = self.mix_columns(state, inverted)
                state = self.add_round_key(state, expanded_key, 16 * i)

        # final round
        state = self.sub_bytes(state, inverted)
        state = self.shift_rows(state, inverted)
        x = (16 * n_rounds) if not inverted else 0
        state = self.add_round_key(state, expanded_key, x)

        return state

    def sub_bytes(self, state, inverted=False):
        # substitute values for sbox values
        if not inverted:
            return bytearray(self.sbox[i] for i in state)
        else:
            return bytearray(self.rsbox[i] for i in state)

    def shift_rows(self, state, inverted=False):
        # transform our column-major order array back into a matrix:
        matrix = [bytearray(4) for i in range(4)]
        for i in range(4):
            for j in range(4):
                matrix[i][j] = state[(i * 4) + j]

        if not inverted:
            # each byte of the nth row is shifted n to the left (0, 1, 2, 3):
            matrix[1] = matrix[1][1:] + matrix[1][:1]
            matrix[2] = matrix[2][2:] + matrix[2][:2]
            matrix[3] = matrix[3][3:] + matrix[3][:3]

        else:
            # each byte of the nth row is shifted n to the left (0, 1, 2, 3):
            matrix[1] = matrix[1][-1:] + matrix[1][:-1]
            matrix[2] = matrix[2][-2:] + matrix[2][:-2]
            matrix[3] = matrix[3][-3:] + matrix[3][:-3]

        # transform the matrix back to column-major order:
        state = bytearray(16)
        for i in range(4):
            for j in range(4):
                state[(i + (j * 4))] = matrix[j][i]

        return state

    # lookup table for galois multiplication
    galois_multiplication = [[], [
        0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
        0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
        0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
        0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
        0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
        0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
        0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
        0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
        0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
        0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
        0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
        0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
        0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
        0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
        0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
        0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
        0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
        0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
        0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
        0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
        0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
        0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
        0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
        0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
        0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
        0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
        0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
        0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
        0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
        0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
        0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
        0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
    ], [
        0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e,
        0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
        0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e,
        0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
        0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e,
        0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
        0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e,
        0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
        0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e,
        0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
        0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae,
        0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
        0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce,
        0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
        0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee,
        0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
        0x1b, 0x19, 0x1f, 0x1d, 0x13, 0x11, 0x17, 0x15,
        0x0b, 0x09, 0x0f, 0x0d, 0x03, 0x01, 0x07, 0x05,
        0x3b, 0x39, 0x3f, 0x3d, 0x33, 0x31, 0x37, 0x35,
        0x2b, 0x29, 0x2f, 0x2d, 0x23, 0x21, 0x27, 0x25,
        0x5b, 0x59, 0x5f, 0x5d, 0x53, 0x51, 0x57, 0x55,
        0x4b, 0x49, 0x4f, 0x4d, 0x43, 0x41, 0x47, 0x45,
        0x7b, 0x79, 0x7f, 0x7d, 0x73, 0x71, 0x77, 0x75,
        0x6b, 0x69, 0x6f, 0x6d, 0x63, 0x61, 0x67, 0x65,
        0x9b, 0x99, 0x9f, 0x9d, 0x93, 0x91, 0x97, 0x95,
        0x8b, 0x89, 0x8f, 0x8d, 0x83, 0x81, 0x87, 0x85,
        0xbb, 0xb9, 0xbf, 0xbd, 0xb3, 0xb1, 0xb7, 0xb5,
        0xab, 0xa9, 0xaf, 0xad, 0xa3, 0xa1, 0xa7, 0xa5,
        0xdb, 0xd9, 0xdf, 0xdd, 0xd3, 0xd1, 0xd7, 0xd5,
        0xcb, 0xc9, 0xcf, 0xcd, 0xc3, 0xc1, 0xc7, 0xc5,
        0xfb, 0xf9, 0xff, 0xfd, 0xf3, 0xf1, 0xf7, 0xf5,
        0xeb, 0xe9, 0xef, 0xed, 0xe3, 0xe1, 0xe7, 0xe5,
    ], [
        0x00, 0x03, 0x06, 0x05, 0x0c, 0x0f, 0x0a, 0x09,
        0x18, 0x1b, 0x1e, 0x1d, 0x14, 0x17, 0x12, 0x11,
        0x30, 0x33, 0x36, 0x35, 0x3c, 0x3f, 0x3a, 0x39,
        0x28, 0x2b, 0x2e, 0x2d, 0x24, 0x27, 0x22, 0x21,
        0x60, 0x63, 0x66, 0x65, 0x6c, 0x6f, 0x6a, 0x69,
        0x78, 0x7b, 0x7e, 0x7d, 0x74, 0x77, 0x72, 0x71,
        0x50, 0x53, 0x56, 0x55, 0x5c, 0x5f, 0x5a, 0x59,
        0x48, 0x4b, 0x4e, 0x4d, 0x44, 0x47, 0x42, 0x41,
        0xc0, 0xc3, 0xc6, 0xc5, 0xcc, 0xcf, 0xca, 0xc9,
        0xd8, 0xdb, 0xde, 0xdd, 0xd4, 0xd7, 0xd2, 0xd1,
        0xf0, 0xf3, 0xf6, 0xf5, 0xfc, 0xff, 0xfa, 0xf9,
        0xe8, 0xeb, 0xee, 0xed, 0xe4, 0xe7, 0xe2, 0xe1,
        0xa0, 0xa3, 0xa6, 0xa5, 0xac, 0xaf, 0xaa, 0xa9,
        0xb8, 0xbb, 0xbe, 0xbd, 0xb4, 0xb7, 0xb2, 0xb1,
        0x90, 0x93, 0x96, 0x95, 0x9c, 0x9f, 0x9a, 0x99,
        0x88, 0x8b, 0x8e, 0x8d, 0x84, 0x87, 0x82, 0x81,
        0x9b, 0x98, 0x9d, 0x9e, 0x97, 0x94, 0x91, 0x92,
        0x83, 0x80, 0x85, 0x86, 0x8f, 0x8c, 0x89, 0x8a,
        0xab, 0xa8, 0xad, 0xae, 0xa7, 0xa4, 0xa1, 0xa2,
        0xb3, 0xb0, 0xb5, 0xb6, 0xbf, 0xbc, 0xb9, 0xba,
        0xfb, 0xf8, 0xfd, 0xfe, 0xf7, 0xf4, 0xf1, 0xf2,
        0xe3, 0xe0, 0xe5, 0xe6, 0xef, 0xec, 0xe9, 0xea,
        0xcb, 0xc8, 0xcd, 0xce, 0xc7, 0xc4, 0xc1, 0xc2,
        0xd3, 0xd0, 0xd5, 0xd6, 0xdf, 0xdc, 0xd9, 0xda,
        0x5b, 0x58, 0x5d, 0x5e, 0x57, 0x54, 0x51, 0x52,
        0x43, 0x40, 0x45, 0x46, 0x4f, 0x4c, 0x49, 0x4a,
        0x6b, 0x68, 0x6d, 0x6e, 0x67, 0x64, 0x61, 0x62,
        0x73, 0x70, 0x75, 0x76, 0x7f, 0x7c, 0x79, 0x7a,
        0x3b, 0x38, 0x3d, 0x3e, 0x37, 0x34, 0x31, 0x32,
        0x23, 0x20, 0x25, 0x26, 0x2f, 0x2c, 0x29, 0x2a,
        0x0b, 0x08, 0x0d, 0x0e, 0x07, 0x04, 0x01, 0x02,
        0x13, 0x10, 0x15, 0x16, 0x1f, 0x1c, 0x19, 0x1a,
    ], [], [], [], [], [], [
        0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f,
        0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 0x7e, 0x77,
        0x90, 0x99, 0x82, 0x8b, 0xb4, 0xbd, 0xa6, 0xaf,
        0xd8, 0xd1, 0xca, 0xc3, 0xfc, 0xf5, 0xee, 0xe7,
        0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04,
        0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c,
        0xab, 0xa2, 0xb9, 0xb0, 0x8f, 0x86, 0x9d, 0x94,
        0xe3, 0xea, 0xf1, 0xf8, 0xc7, 0xce, 0xd5, 0xdc,
        0x76, 0x7f, 0x64, 0x6d, 0x52, 0x5b, 0x40, 0x49,
        0x3e, 0x37, 0x2c, 0x25, 0x1a, 0x13, 0x08, 0x01,
        0xe6, 0xef, 0xf4, 0xfd, 0xc2, 0xcb, 0xd0, 0xd9,
        0xae, 0xa7, 0xbc, 0xb5, 0x8a, 0x83, 0x98, 0x91,
        0x4d, 0x44, 0x5f, 0x56, 0x69, 0x60, 0x7b, 0x72,
        0x05, 0x0c, 0x17, 0x1e, 0x21, 0x28, 0x33, 0x3a,
        0xdd, 0xd4, 0xcf, 0xc6, 0xf9, 0xf0, 0xeb, 0xe2,
        0x95, 0x9c, 0x87, 0x8e, 0xb1, 0xb8, 0xa3, 0xaa,
        0xec, 0xe5, 0xfe, 0xf7, 0xc8, 0xc1, 0xda, 0xd3,
        0xa4, 0xad, 0xb6, 0xbf, 0x80, 0x89, 0x92, 0x9b,
        0x7c, 0x75, 0x6e, 0x67, 0x58, 0x51, 0x4a, 0x43,
        0x34, 0x3d, 0x26, 0x2f, 0x10, 0x19, 0x02, 0x0b,
        0xd7, 0xde, 0xc5, 0xcc, 0xf3, 0xfa, 0xe1, 0xe8,
        0x9f, 0x96, 0x8d, 0x84, 0xbb, 0xb2, 0xa9, 0xa0,
        0x47, 0x4e, 0x55, 0x5c, 0x63, 0x6a, 0x71, 0x78,
        0x0f, 0x06, 0x1d, 0x14, 0x2b, 0x22, 0x39, 0x30,
        0x9a, 0x93, 0x88, 0x81, 0xbe, 0xb7, 0xac, 0xa5,
        0xd2, 0xdb, 0xc0, 0xc9, 0xf6, 0xff, 0xe4, 0xed,
        0x0a, 0x03, 0x18, 0x11, 0x2e, 0x27, 0x3c, 0x35,
        0x42, 0x4b, 0x50, 0x59, 0x66, 0x6f, 0x74, 0x7d,
        0xa1, 0xa8, 0xb3, 0xba, 0x85, 0x8c, 0x97, 0x9e,
        0xe9, 0xe0, 0xfb, 0xf2, 0xcd, 0xc4, 0xdf, 0xd6,
        0x31, 0x38, 0x23, 0x2a, 0x15, 0x1c, 0x07, 0x0e,
        0x79, 0x70, 0x6b, 0x62, 0x5d, 0x54, 0x4f, 0x46,
    ], [], [
        0x00, 0x0b, 0x16, 0x1d, 0x2c, 0x27, 0x3a, 0x31,
        0x58, 0x53, 0x4e, 0x45, 0x74, 0x7f, 0x62, 0x69,
        0xb0, 0xbb, 0xa6, 0xad, 0x9c, 0x97, 0x8a, 0x81,
        0xe8, 0xe3, 0xfe, 0xf5, 0xc4, 0xcf, 0xd2, 0xd9,
        0x7b, 0x70, 0x6d, 0x66, 0x57, 0x5c, 0x41, 0x4a,
        0x23, 0x28, 0x35, 0x3e, 0x0f, 0x04, 0x19, 0x12,
        0xcb, 0xc0, 0xdd, 0xd6, 0xe7, 0xec, 0xf1, 0xfa,
        0x93, 0x98, 0x85, 0x8e, 0xbf, 0xb4, 0xa9, 0xa2,
        0xf6, 0xfd, 0xe0, 0xeb, 0xda, 0xd1, 0xcc, 0xc7,
        0xae, 0xa5, 0xb8, 0xb3, 0x82, 0x89, 0x94, 0x9f,
        0x46, 0x4d, 0x50, 0x5b, 0x6a, 0x61, 0x7c, 0x77,
        0x1e, 0x15, 0x08, 0x03, 0x32, 0x39, 0x24, 0x2f,
        0x8d, 0x86, 0x9b, 0x90, 0xa1, 0xaa, 0xb7, 0xbc,
        0xd5, 0xde, 0xc3, 0xc8, 0xf9, 0xf2, 0xef, 0xe4,
        0x3d, 0x36, 0x2b, 0x20, 0x11, 0x1a, 0x07, 0x0c,
        0x65, 0x6e, 0x73, 0x78, 0x49, 0x42, 0x5f, 0x54,
        0xf7, 0xfc, 0xe1, 0xea, 0xdb, 0xd0, 0xcd, 0xc6,
        0xaf, 0xa4, 0xb9, 0xb2, 0x83, 0x88, 0x95, 0x9e,
        0x47, 0x4c, 0x51, 0x5a, 0x6b, 0x60, 0x7d, 0x76,
        0x1f, 0x14, 0x09, 0x02, 0x33, 0x38, 0x25, 0x2e,
        0x8c, 0x87, 0x9a, 0x91, 0xa0, 0xab, 0xb6, 0xbd,
        0xd4, 0xdf, 0xc2, 0xc9, 0xf8, 0xf3, 0xee, 0xe5,
        0x3c, 0x37, 0x2a, 0x21, 0x10, 0x1b, 0x06, 0x0d,
        0x64, 0x6f, 0x72, 0x79, 0x48, 0x43, 0x5e, 0x55,
        0x01, 0x0a, 0x17, 0x1c, 0x2d, 0x26, 0x3b, 0x30,
        0x59, 0x52, 0x4f, 0x44, 0x75, 0x7e, 0x63, 0x68,
        0xb1, 0xba, 0xa7, 0xac, 0x9d, 0x96, 0x8b, 0x80,
        0xe9, 0xe2, 0xff, 0xf4, 0xc5, 0xce, 0xd3, 0xd8,
        0x7a, 0x71, 0x6c, 0x67, 0x56, 0x5d, 0x40, 0x4b,
        0x22, 0x29, 0x34, 0x3f, 0x0e, 0x05, 0x18, 0x13,
        0xca, 0xc1, 0xdc, 0xd7, 0xe6, 0xed, 0xf0, 0xfb,
        0x92, 0x99, 0x84, 0x8f, 0xbe, 0xb5, 0xa8, 0xa3,
    ], [], [
        0x00, 0x0d, 0x1a, 0x17, 0x34, 0x39, 0x2e, 0x23,
        0x68, 0x65, 0x72, 0x7f, 0x5c, 0x51, 0x46, 0x4b,
        0xd0, 0xdd, 0xca, 0xc7, 0xe4, 0xe9, 0xfe, 0xf3,
        0xb8, 0xb5, 0xa2, 0xaf, 0x8c, 0x81, 0x96, 0x9b,
        0xbb, 0xb6, 0xa1, 0xac, 0x8f, 0x82, 0x95, 0x98,
        0xd3, 0xde, 0xc9, 0xc4, 0xe7, 0xea, 0xfd, 0xf0,
        0x6b, 0x66, 0x71, 0x7c, 0x5f, 0x52, 0x45, 0x48,
        0x03, 0x0e, 0x19, 0x14, 0x37, 0x3a, 0x2d, 0x20,
        0x6d, 0x60, 0x77, 0x7a, 0x59, 0x54, 0x43, 0x4e,
        0x05, 0x08, 0x1f, 0x12, 0x31, 0x3c, 0x2b, 0x26,
        0xbd, 0xb0, 0xa7, 0xaa, 0x89, 0x84, 0x93, 0x9e,
        0xd5, 0xd8, 0xcf, 0xc2, 0xe1, 0xec, 0xfb, 0xf6,
        0xd6, 0xdb, 0xcc, 0xc1, 0xe2, 0xef, 0xf8, 0xf5,
        0xbe, 0xb3, 0xa4, 0xa9, 0x8a, 0x87, 0x90, 0x9d,
        0x06, 0x0b, 0x1c, 0x11, 0x32, 0x3f, 0x28, 0x25,
        0x6e, 0x63, 0x74, 0x79, 0x5a, 0x57, 0x40, 0x4d,
        0xda, 0xd7, 0xc0, 0xcd, 0xee, 0xe3, 0xf4, 0xf9,
        0xb2, 0xbf, 0xa8, 0xa5, 0x86, 0x8b, 0x9c, 0x91,
        0x0a, 0x07, 0x10, 0x1d, 0x3e, 0x33, 0x24, 0x29,
        0x62, 0x6f, 0x78, 0x75, 0x56, 0x5b, 0x4c, 0x41,
        0x61, 0x6c, 0x7b, 0x76, 0x55, 0x58, 0x4f, 0x42,
        0x09, 0x04, 0x13, 0x1e, 0x3d, 0x30, 0x27, 0x2a,
        0xb1, 0xbc, 0xab, 0xa6, 0x85, 0x88, 0x9f, 0x92,
        0xd9, 0xd4, 0xc3, 0xce, 0xed, 0xe0, 0xf7, 0xfa,
        0xb7, 0xba, 0xad, 0xa0, 0x83, 0x8e, 0x99, 0x94,
        0xdf, 0xd2, 0xc5, 0xc8, 0xeb, 0xe6, 0xf1, 0xfc,
        0x67, 0x6a, 0x7d, 0x70, 0x53, 0x5e, 0x49, 0x44,
        0x0f, 0x02, 0x15, 0x18, 0x3b, 0x36, 0x21, 0x2c,
        0x0c, 0x01, 0x16, 0x1b, 0x38, 0x35, 0x22, 0x2f,
        0x64, 0x69, 0x7e, 0x73, 0x50, 0x5d, 0x4a, 0x47,
        0xdc, 0xd1, 0xc6, 0xcb, 0xe8, 0xe5, 0xf2, 0xff,
        0xb4, 0xb9, 0xae, 0xa3, 0x80, 0x8d, 0x9a, 0x97,
    ], [
        0x00, 0x0e, 0x1c, 0x12, 0x38, 0x36, 0x24, 0x2a,
        0x70, 0x7e, 0x6c, 0x62, 0x48, 0x46, 0x54, 0x5a,
        0xe0, 0xee, 0xfc, 0xf2, 0xd8, 0xd6, 0xc4, 0xca,
        0x90, 0x9e, 0x8c, 0x82, 0xa8, 0xa6, 0xb4, 0xba,
        0xdb, 0xd5, 0xc7, 0xc9, 0xe3, 0xed, 0xff, 0xf1,
        0xab, 0xa5, 0xb7, 0xb9, 0x93, 0x9d, 0x8f, 0x81,
        0x3b, 0x35, 0x27, 0x29, 0x03, 0x0d, 0x1f, 0x11,
        0x4b, 0x45, 0x57, 0x59, 0x73, 0x7d, 0x6f, 0x61,
        0xad, 0xa3, 0xb1, 0xbf, 0x95, 0x9b, 0x89, 0x87,
        0xdd, 0xd3, 0xc1, 0xcf, 0xe5, 0xeb, 0xf9, 0xf7,
        0x4d, 0x43, 0x51, 0x5f, 0x75, 0x7b, 0x69, 0x67,
        0x3d, 0x33, 0x21, 0x2f, 0x05, 0x0b, 0x19, 0x17,
        0x76, 0x78, 0x6a, 0x64, 0x4e, 0x40, 0x52, 0x5c,
        0x06, 0x08, 0x1a, 0x14, 0x3e, 0x30, 0x22, 0x2c,
        0x96, 0x98, 0x8a, 0x84, 0xae, 0xa0, 0xb2, 0xbc,
        0xe6, 0xe8, 0xfa, 0xf4, 0xde, 0xd0, 0xc2, 0xcc,
        0x41, 0x4f, 0x5d, 0x53, 0x79, 0x77, 0x65, 0x6b,
        0x31, 0x3f, 0x2d, 0x23, 0x09, 0x07, 0x15, 0x1b,
        0xa1, 0xaf, 0xbd, 0xb3, 0x99, 0x97, 0x85, 0x8b,
        0xd1, 0xdf, 0xcd, 0xc3, 0xe9, 0xe7, 0xf5, 0xfb,
        0x9a, 0x94, 0x86, 0x88, 0xa2, 0xac, 0xbe, 0xb0,
        0xea, 0xe4, 0xf6, 0xf8, 0xd2, 0xdc, 0xce, 0xc0,
        0x7a, 0x74, 0x66, 0x68, 0x42, 0x4c, 0x5e, 0x50,
        0x0a, 0x04, 0x16, 0x18, 0x32, 0x3c, 0x2e, 0x20,
        0xec, 0xe2, 0xf0, 0xfe, 0xd4, 0xda, 0xc8, 0xc6,
        0x9c, 0x92, 0x80, 0x8e, 0xa4, 0xaa, 0xb8, 0xb6,
        0x0c, 0x02, 0x10, 0x1e, 0x34, 0x3a, 0x28, 0x26,
        0x7c, 0x72, 0x60, 0x6e, 0x44, 0x4a, 0x58, 0x56,
        0x37, 0x39, 0x2b, 0x25, 0x0f, 0x01, 0x13, 0x1d,
        0x47, 0x49, 0x5b, 0x55, 0x7f, 0x71, 0x63, 0x6d,
        0xd7, 0xd9, 0xcb, 0xc5, 0xef, 0xe1, 0xf3, 0xfd,
        0xa7, 0xa9, 0xbb, 0xb5, 0x9f, 0x91, 0x83, 0x8d,
    ]]

    def mix_columns(self, state, inverted=False):

        def mix_column(column):
            if not inverted:
                m = [2, 1, 1, 3]
            else:
                m = [14, 9, 13, 11]

            c = bytearray(i for i in column)
            g = lambda a, b: self.galois_multiplication[b][a]

            column[0] = (g(c[0], m[0]) ^ g(c[3], m[1]) ^
                         g(c[2], m[2]) ^ g(c[1], m[3]))
            column[1] = (g(c[1], m[0]) ^ g(c[0], m[1]) ^
                         g(c[3], m[2]) ^ g(c[2], m[3]))
            column[2] = (g(c[2], m[0]) ^ g(c[1], m[1]) ^
                         g(c[0], m[2]) ^ g(c[3], m[3]))
            column[3] = (g(c[3], m[0]) ^ g(c[2], m[1]) ^
                         g(c[1], m[2]) ^ g(c[0], m[3]))

            return column

        for i in range(4):
            # get a column out of our column-major order matrix:
            column = state[i:i + 16:4]
            # apply mix_column to that:
            column = mix_column(column)
            # re-insert the result into the matrix array:
            state[i:i + 16:4] = column
        return state

Classes

class AES

class AES(object):

    # the block size  of AES is always 16
    # bytes, no matter what the key size is.
    block_size = 16

    # lookup talbe for the rijndael s-box
    sbox = [
        0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67,
        0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59,
        0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7,
        0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1,
        0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05,
        0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83,
        0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29,
        0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
        0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa,
        0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,
        0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc,
        0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
        0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19,
        0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee,
        0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49,
        0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
        0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4,
        0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6,
        0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70,
        0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9,
        0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e,
        0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1,
        0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0,
        0x54, 0xbb, 0x16]

    # lookup table for the inverse rijndael s-box
    rsbox = [
        0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3,
        0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f,
        0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54,
        0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b,
        0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24,
        0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8,
        0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d,
        0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
        0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab,
        0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3,
        0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1,
        0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41,
        0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6,
        0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9,
        0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d,
        0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
        0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0,
        0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07,
        0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60,
        0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f,
        0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5,
        0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b,
        0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55,
        0x21, 0x0c, 0x7d]

    # lookup table for r-con (n**2 in rijndaels finite filed GF(2^8)
    rcon = [
        0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
        0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97,
        0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72,
        0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66,
        0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
        0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d,
        0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
        0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61,
        0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
        0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40,
        0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc,
        0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5,
        0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a,
        0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d,
        0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c,
        0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
        0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4,
        0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
        0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08,
        0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
        0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d,
        0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2,
        0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74,
        0xe8, 0xcb]

    def __init__(self):
        pass

    @staticmethod
    def xor(a, b):
        ''' bitwise xor on equal length bytearrays '''
        return bytearray(i ^ j for i, j in zip(a, b))

    @staticmethod
    def rotate(word):
        ''' rotate a sequence of bytes eight bits to the left '''
        return word[1:] + word[:1]

    def rijndael_key_schedule(self, key):

        def rijndael_key_schedule_core(key_word, rcon_iteration):

            # rotate eight bits to the left:
            key_word = self.rotate(key_word)
            # apply the s-box to all 4 bytes:
            key_word = bytearray(self.sbox[i] for i in key_word)
            # xor the first byte with the rcon value for the current iteration
            key_word[0] = key_word[0] ^ self.rcon[rcon_iteration]

            return key_word

        # define constants for the length of the key
        # and length of the expanded key, n and b:
        if len(key) == 16:
            n, b = 16, 176
        elif len(key) == 24:
            n, b = 24, 208
        elif len(key) == 32:
            n, b = 32, 240
        else:
            raise ValueError("key must be 16, 24 or 32 bytes long")

        # the expanded key has the length b, and it's
        # first n bytes are the encryption key itself:
        expanded_key = bytearray(b)
        expanded_key[:len(key)] = key

        current_size = len(key)
        rcon_iteration = 1

        while current_size < b:
            # adding 4 bytes to the expanded key, starting
            # with the value of the previous 4 bytes in the
            # expanded key:

            # expanded_key is the expanded key, cs is the current size of it

            # t is the previous 4 bytes in the expanded key:
            t = expanded_key[current_size - 4:current_size]

            # perform the key schedule core on t:
            t = rijndael_key_schedule_core(t, rcon_iteration)
            rcon_iteration += 1
            # exclusive-or t with the 4 bytes before the expanded key
            # and make that the next 4 bytes of the expanded key:
            expanded_key[current_size:current_size + 4] = self.xor(
                expanded_key[current_size - n:current_size - n + 4], t)
            current_size += 4

            for i in range(3):
                t = expanded_key[current_size - 4:current_size]  # 1
                expanded_key[current_size:current_size + 4] = self.xor(
                    expanded_key[current_size - n:current_size - n + 4], t)
                current_size += 4

            if n == 32:  # if we're generating a 256 bit key
                t = expanded_key[current_size - 4:current_size]  # 1
                # run each of the 4 bytes through the rijdael s-box:
                t = bytearray(self.sbox[i] for i in t)
                expanded_key[current_size:current_size + 4] = self.xor(
                    expanded_key[current_size - n:current_size - n + 4], t)
                current_size += 4

            # if we're generating a 128 bit key, don't do the next step,
            # do it 2 times for a 192 bit key, 3 times for a 256 bit key:
            for i in range(0 if n == 16 else 2 if n == 24 else 3):
                t = expanded_key[current_size - 4:current_size]  # 1
                expanded_key[current_size:current_size + 4] = self.xor(
                    expanded_key[current_size - n:current_size - n + 4], t)
                current_size += 4

        # because of the last step, the expanded key might be too long:
        return expanded_key[:b]

    def encrypt(self, data, key):
        return self.start(data, key, inverted=False)

    def decrypt(self, data, key):
        return self.start(data, key, inverted=True)

    def start(self, data, key, inverted=False):
        # determine the number of rounds and raise
        # an exception for wrongly sized keys:
        if len(key) == 16:
            n_rounds = 10
        elif len(key) == 24:
            n_rounds = 12
        elif len(key) == 32:
            n_rounds = 14
        else:
            raise ValueError("key must be 16, 24 or 32 bytes long")
        # empty bytearrays for our current block and the result,
        # bytearrays are the mutable version of <type 'bytes'>:
        block, result = bytearray(16), bytearray(16)

        # get the expanded key from the rijndael key schedule:
        expanded_key = self.rijndael_key_schedule(key)

        # aes operates on a 4 by 4 matrix, the state, which is
        # stored as a flat array in column-major order, such that
        # [[1, 2, 3], [4, 5, 6]] becomes [1, 4, 2, 5, 3, 6]:
        for i in range(4):
            for j in range(4):
                block[(i + (j * 4))] = data[(i * 4) + j]

        # initial round and start of the aes process:
        block = self.main(block, expanded_key, n_rounds, inverted)

        # here we turn the flat matrix back into a linear array
        # from column-major order:
        for k in range(4):
            for l in range(4):
                result[(k * 4) + l] = block[(k + (l * 4))]

        # return the result as an immutable bytes object:
        return bytes(result)

    def get_round_key(self, expanded_key, kp):
        round_key = bytearray(16)
        for i in range(4):
            for j in range(4):
                round_key[j * 4 + i] = expanded_key[kp + i * 4 + j]
        return round_key

    def add_round_key(self, state, expanded_key, kp):
        # xor the state with the round key
        return self.xor(state, self.get_round_key(expanded_key, kp))

    def main(self, state, expanded_key, n_rounds, inverted=False):

        # i is used as the round key pointer (kp)
        # and the iteration is reversed on decryption

        # initial round:
        x = (16 * n_rounds) if inverted else 0
        state = self.add_round_key(state, expanded_key, x)

        # normal rounds:
        for i in (range(n_rounds - 1, 0, -1)
                  if inverted else range(1, n_rounds)):
            if inverted:
                state = self.shift_rows(state, inverted)
                state = self.sub_bytes(state, inverted)
                state = self.add_round_key(state, expanded_key, 16 * i)
                state = self.mix_columns(state, inverted)
            else:
                state = self.sub_bytes(state, inverted)
                state = self.shift_rows(state, inverted)
                state = self.mix_columns(state, inverted)
                state = self.add_round_key(state, expanded_key, 16 * i)

        # final round
        state = self.sub_bytes(state, inverted)
        state = self.shift_rows(state, inverted)
        x = (16 * n_rounds) if not inverted else 0
        state = self.add_round_key(state, expanded_key, x)

        return state

    def sub_bytes(self, state, inverted=False):
        # substitute values for sbox values
        if not inverted:
            return bytearray(self.sbox[i] for i in state)
        else:
            return bytearray(self.rsbox[i] for i in state)

    def shift_rows(self, state, inverted=False):
        # transform our column-major order array back into a matrix:
        matrix = [bytearray(4) for i in range(4)]
        for i in range(4):
            for j in range(4):
                matrix[i][j] = state[(i * 4) + j]

        if not inverted:
            # each byte of the nth row is shifted n to the left (0, 1, 2, 3):
            matrix[1] = matrix[1][1:] + matrix[1][:1]
            matrix[2] = matrix[2][2:] + matrix[2][:2]
            matrix[3] = matrix[3][3:] + matrix[3][:3]

        else:
            # each byte of the nth row is shifted n to the left (0, 1, 2, 3):
            matrix[1] = matrix[1][-1:] + matrix[1][:-1]
            matrix[2] = matrix[2][-2:] + matrix[2][:-2]
            matrix[3] = matrix[3][-3:] + matrix[3][:-3]

        # transform the matrix back to column-major order:
        state = bytearray(16)
        for i in range(4):
            for j in range(4):
                state[(i + (j * 4))] = matrix[j][i]

        return state

    # lookup table for galois multiplication
    galois_multiplication = [[], [
        0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
        0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
        0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
        0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
        0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
        0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
        0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
        0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
        0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
        0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
        0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
        0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
        0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
        0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
        0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
        0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
        0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
        0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
        0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
        0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
        0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
        0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
        0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
        0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
        0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
        0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
        0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
        0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
        0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
        0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
        0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
        0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
    ], [
        0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e,
        0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
        0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e,
        0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
        0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e,
        0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
        0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e,
        0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
        0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e,
        0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
        0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae,
        0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
        0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce,
        0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
        0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee,
        0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
        0x1b, 0x19, 0x1f, 0x1d, 0x13, 0x11, 0x17, 0x15,
        0x0b, 0x09, 0x0f, 0x0d, 0x03, 0x01, 0x07, 0x05,
        0x3b, 0x39, 0x3f, 0x3d, 0x33, 0x31, 0x37, 0x35,
        0x2b, 0x29, 0x2f, 0x2d, 0x23, 0x21, 0x27, 0x25,
        0x5b, 0x59, 0x5f, 0x5d, 0x53, 0x51, 0x57, 0x55,
        0x4b, 0x49, 0x4f, 0x4d, 0x43, 0x41, 0x47, 0x45,
        0x7b, 0x79, 0x7f, 0x7d, 0x73, 0x71, 0x77, 0x75,
        0x6b, 0x69, 0x6f, 0x6d, 0x63, 0x61, 0x67, 0x65,
        0x9b, 0x99, 0x9f, 0x9d, 0x93, 0x91, 0x97, 0x95,
        0x8b, 0x89, 0x8f, 0x8d, 0x83, 0x81, 0x87, 0x85,
        0xbb, 0xb9, 0xbf, 0xbd, 0xb3, 0xb1, 0xb7, 0xb5,
        0xab, 0xa9, 0xaf, 0xad, 0xa3, 0xa1, 0xa7, 0xa5,
        0xdb, 0xd9, 0xdf, 0xdd, 0xd3, 0xd1, 0xd7, 0xd5,
        0xcb, 0xc9, 0xcf, 0xcd, 0xc3, 0xc1, 0xc7, 0xc5,
        0xfb, 0xf9, 0xff, 0xfd, 0xf3, 0xf1, 0xf7, 0xf5,
        0xeb, 0xe9, 0xef, 0xed, 0xe3, 0xe1, 0xe7, 0xe5,
    ], [
        0x00, 0x03, 0x06, 0x05, 0x0c, 0x0f, 0x0a, 0x09,
        0x18, 0x1b, 0x1e, 0x1d, 0x14, 0x17, 0x12, 0x11,
        0x30, 0x33, 0x36, 0x35, 0x3c, 0x3f, 0x3a, 0x39,
        0x28, 0x2b, 0x2e, 0x2d, 0x24, 0x27, 0x22, 0x21,
        0x60, 0x63, 0x66, 0x65, 0x6c, 0x6f, 0x6a, 0x69,
        0x78, 0x7b, 0x7e, 0x7d, 0x74, 0x77, 0x72, 0x71,
        0x50, 0x53, 0x56, 0x55, 0x5c, 0x5f, 0x5a, 0x59,
        0x48, 0x4b, 0x4e, 0x4d, 0x44, 0x47, 0x42, 0x41,
        0xc0, 0xc3, 0xc6, 0xc5, 0xcc, 0xcf, 0xca, 0xc9,
        0xd8, 0xdb, 0xde, 0xdd, 0xd4, 0xd7, 0xd2, 0xd1,
        0xf0, 0xf3, 0xf6, 0xf5, 0xfc, 0xff, 0xfa, 0xf9,
        0xe8, 0xeb, 0xee, 0xed, 0xe4, 0xe7, 0xe2, 0xe1,
        0xa0, 0xa3, 0xa6, 0xa5, 0xac, 0xaf, 0xaa, 0xa9,
        0xb8, 0xbb, 0xbe, 0xbd, 0xb4, 0xb7, 0xb2, 0xb1,
        0x90, 0x93, 0x96, 0x95, 0x9c, 0x9f, 0x9a, 0x99,
        0x88, 0x8b, 0x8e, 0x8d, 0x84, 0x87, 0x82, 0x81,
        0x9b, 0x98, 0x9d, 0x9e, 0x97, 0x94, 0x91, 0x92,
        0x83, 0x80, 0x85, 0x86, 0x8f, 0x8c, 0x89, 0x8a,
        0xab, 0xa8, 0xad, 0xae, 0xa7, 0xa4, 0xa1, 0xa2,
        0xb3, 0xb0, 0xb5, 0xb6, 0xbf, 0xbc, 0xb9, 0xba,
        0xfb, 0xf8, 0xfd, 0xfe, 0xf7, 0xf4, 0xf1, 0xf2,
        0xe3, 0xe0, 0xe5, 0xe6, 0xef, 0xec, 0xe9, 0xea,
        0xcb, 0xc8, 0xcd, 0xce, 0xc7, 0xc4, 0xc1, 0xc2,
        0xd3, 0xd0, 0xd5, 0xd6, 0xdf, 0xdc, 0xd9, 0xda,
        0x5b, 0x58, 0x5d, 0x5e, 0x57, 0x54, 0x51, 0x52,
        0x43, 0x40, 0x45, 0x46, 0x4f, 0x4c, 0x49, 0x4a,
        0x6b, 0x68, 0x6d, 0x6e, 0x67, 0x64, 0x61, 0x62,
        0x73, 0x70, 0x75, 0x76, 0x7f, 0x7c, 0x79, 0x7a,
        0x3b, 0x38, 0x3d, 0x3e, 0x37, 0x34, 0x31, 0x32,
        0x23, 0x20, 0x25, 0x26, 0x2f, 0x2c, 0x29, 0x2a,
        0x0b, 0x08, 0x0d, 0x0e, 0x07, 0x04, 0x01, 0x02,
        0x13, 0x10, 0x15, 0x16, 0x1f, 0x1c, 0x19, 0x1a,
    ], [], [], [], [], [], [
        0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f,
        0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 0x7e, 0x77,
        0x90, 0x99, 0x82, 0x8b, 0xb4, 0xbd, 0xa6, 0xaf,
        0xd8, 0xd1, 0xca, 0xc3, 0xfc, 0xf5, 0xee, 0xe7,
        0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04,
        0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c,
        0xab, 0xa2, 0xb9, 0xb0, 0x8f, 0x86, 0x9d, 0x94,
        0xe3, 0xea, 0xf1, 0xf8, 0xc7, 0xce, 0xd5, 0xdc,
        0x76, 0x7f, 0x64, 0x6d, 0x52, 0x5b, 0x40, 0x49,
        0x3e, 0x37, 0x2c, 0x25, 0x1a, 0x13, 0x08, 0x01,
        0xe6, 0xef, 0xf4, 0xfd, 0xc2, 0xcb, 0xd0, 0xd9,
        0xae, 0xa7, 0xbc, 0xb5, 0x8a, 0x83, 0x98, 0x91,
        0x4d, 0x44, 0x5f, 0x56, 0x69, 0x60, 0x7b, 0x72,
        0x05, 0x0c, 0x17, 0x1e, 0x21, 0x28, 0x33, 0x3a,
        0xdd, 0xd4, 0xcf, 0xc6, 0xf9, 0xf0, 0xeb, 0xe2,
        0x95, 0x9c, 0x87, 0x8e, 0xb1, 0xb8, 0xa3, 0xaa,
        0xec, 0xe5, 0xfe, 0xf7, 0xc8, 0xc1, 0xda, 0xd3,
        0xa4, 0xad, 0xb6, 0xbf, 0x80, 0x89, 0x92, 0x9b,
        0x7c, 0x75, 0x6e, 0x67, 0x58, 0x51, 0x4a, 0x43,
        0x34, 0x3d, 0x26, 0x2f, 0x10, 0x19, 0x02, 0x0b,
        0xd7, 0xde, 0xc5, 0xcc, 0xf3, 0xfa, 0xe1, 0xe8,
        0x9f, 0x96, 0x8d, 0x84, 0xbb, 0xb2, 0xa9, 0xa0,
        0x47, 0x4e, 0x55, 0x5c, 0x63, 0x6a, 0x71, 0x78,
        0x0f, 0x06, 0x1d, 0x14, 0x2b, 0x22, 0x39, 0x30,
        0x9a, 0x93, 0x88, 0x81, 0xbe, 0xb7, 0xac, 0xa5,
        0xd2, 0xdb, 0xc0, 0xc9, 0xf6, 0xff, 0xe4, 0xed,
        0x0a, 0x03, 0x18, 0x11, 0x2e, 0x27, 0x3c, 0x35,
        0x42, 0x4b, 0x50, 0x59, 0x66, 0x6f, 0x74, 0x7d,
        0xa1, 0xa8, 0xb3, 0xba, 0x85, 0x8c, 0x97, 0x9e,
        0xe9, 0xe0, 0xfb, 0xf2, 0xcd, 0xc4, 0xdf, 0xd6,
        0x31, 0x38, 0x23, 0x2a, 0x15, 0x1c, 0x07, 0x0e,
        0x79, 0x70, 0x6b, 0x62, 0x5d, 0x54, 0x4f, 0x46,
    ], [], [
        0x00, 0x0b, 0x16, 0x1d, 0x2c, 0x27, 0x3a, 0x31,
        0x58, 0x53, 0x4e, 0x45, 0x74, 0x7f, 0x62, 0x69,
        0xb0, 0xbb, 0xa6, 0xad, 0x9c, 0x97, 0x8a, 0x81,
        0xe8, 0xe3, 0xfe, 0xf5, 0xc4, 0xcf, 0xd2, 0xd9,
        0x7b, 0x70, 0x6d, 0x66, 0x57, 0x5c, 0x41, 0x4a,
        0x23, 0x28, 0x35, 0x3e, 0x0f, 0x04, 0x19, 0x12,
        0xcb, 0xc0, 0xdd, 0xd6, 0xe7, 0xec, 0xf1, 0xfa,
        0x93, 0x98, 0x85, 0x8e, 0xbf, 0xb4, 0xa9, 0xa2,
        0xf6, 0xfd, 0xe0, 0xeb, 0xda, 0xd1, 0xcc, 0xc7,
        0xae, 0xa5, 0xb8, 0xb3, 0x82, 0x89, 0x94, 0x9f,
        0x46, 0x4d, 0x50, 0x5b, 0x6a, 0x61, 0x7c, 0x77,
        0x1e, 0x15, 0x08, 0x03, 0x32, 0x39, 0x24, 0x2f,
        0x8d, 0x86, 0x9b, 0x90, 0xa1, 0xaa, 0xb7, 0xbc,
        0xd5, 0xde, 0xc3, 0xc8, 0xf9, 0xf2, 0xef, 0xe4,
        0x3d, 0x36, 0x2b, 0x20, 0x11, 0x1a, 0x07, 0x0c,
        0x65, 0x6e, 0x73, 0x78, 0x49, 0x42, 0x5f, 0x54,
        0xf7, 0xfc, 0xe1, 0xea, 0xdb, 0xd0, 0xcd, 0xc6,
        0xaf, 0xa4, 0xb9, 0xb2, 0x83, 0x88, 0x95, 0x9e,
        0x47, 0x4c, 0x51, 0x5a, 0x6b, 0x60, 0x7d, 0x76,
        0x1f, 0x14, 0x09, 0x02, 0x33, 0x38, 0x25, 0x2e,
        0x8c, 0x87, 0x9a, 0x91, 0xa0, 0xab, 0xb6, 0xbd,
        0xd4, 0xdf, 0xc2, 0xc9, 0xf8, 0xf3, 0xee, 0xe5,
        0x3c, 0x37, 0x2a, 0x21, 0x10, 0x1b, 0x06, 0x0d,
        0x64, 0x6f, 0x72, 0x79, 0x48, 0x43, 0x5e, 0x55,
        0x01, 0x0a, 0x17, 0x1c, 0x2d, 0x26, 0x3b, 0x30,
        0x59, 0x52, 0x4f, 0x44, 0x75, 0x7e, 0x63, 0x68,
        0xb1, 0xba, 0xa7, 0xac, 0x9d, 0x96, 0x8b, 0x80,
        0xe9, 0xe2, 0xff, 0xf4, 0xc5, 0xce, 0xd3, 0xd8,
        0x7a, 0x71, 0x6c, 0x67, 0x56, 0x5d, 0x40, 0x4b,
        0x22, 0x29, 0x34, 0x3f, 0x0e, 0x05, 0x18, 0x13,
        0xca, 0xc1, 0xdc, 0xd7, 0xe6, 0xed, 0xf0, 0xfb,
        0x92, 0x99, 0x84, 0x8f, 0xbe, 0xb5, 0xa8, 0xa3,
    ], [], [
        0x00, 0x0d, 0x1a, 0x17, 0x34, 0x39, 0x2e, 0x23,
        0x68, 0x65, 0x72, 0x7f, 0x5c, 0x51, 0x46, 0x4b,
        0xd0, 0xdd, 0xca, 0xc7, 0xe4, 0xe9, 0xfe, 0xf3,
        0xb8, 0xb5, 0xa2, 0xaf, 0x8c, 0x81, 0x96, 0x9b,
        0xbb, 0xb6, 0xa1, 0xac, 0x8f, 0x82, 0x95, 0x98,
        0xd3, 0xde, 0xc9, 0xc4, 0xe7, 0xea, 0xfd, 0xf0,
        0x6b, 0x66, 0x71, 0x7c, 0x5f, 0x52, 0x45, 0x48,
        0x03, 0x0e, 0x19, 0x14, 0x37, 0x3a, 0x2d, 0x20,
        0x6d, 0x60, 0x77, 0x7a, 0x59, 0x54, 0x43, 0x4e,
        0x05, 0x08, 0x1f, 0x12, 0x31, 0x3c, 0x2b, 0x26,
        0xbd, 0xb0, 0xa7, 0xaa, 0x89, 0x84, 0x93, 0x9e,
        0xd5, 0xd8, 0xcf, 0xc2, 0xe1, 0xec, 0xfb, 0xf6,
        0xd6, 0xdb, 0xcc, 0xc1, 0xe2, 0xef, 0xf8, 0xf5,
        0xbe, 0xb3, 0xa4, 0xa9, 0x8a, 0x87, 0x90, 0x9d,
        0x06, 0x0b, 0x1c, 0x11, 0x32, 0x3f, 0x28, 0x25,
        0x6e, 0x63, 0x74, 0x79, 0x5a, 0x57, 0x40, 0x4d,
        0xda, 0xd7, 0xc0, 0xcd, 0xee, 0xe3, 0xf4, 0xf9,
        0xb2, 0xbf, 0xa8, 0xa5, 0x86, 0x8b, 0x9c, 0x91,
        0x0a, 0x07, 0x10, 0x1d, 0x3e, 0x33, 0x24, 0x29,
        0x62, 0x6f, 0x78, 0x75, 0x56, 0x5b, 0x4c, 0x41,
        0x61, 0x6c, 0x7b, 0x76, 0x55, 0x58, 0x4f, 0x42,
        0x09, 0x04, 0x13, 0x1e, 0x3d, 0x30, 0x27, 0x2a,
        0xb1, 0xbc, 0xab, 0xa6, 0x85, 0x88, 0x9f, 0x92,
        0xd9, 0xd4, 0xc3, 0xce, 0xed, 0xe0, 0xf7, 0xfa,
        0xb7, 0xba, 0xad, 0xa0, 0x83, 0x8e, 0x99, 0x94,
        0xdf, 0xd2, 0xc5, 0xc8, 0xeb, 0xe6, 0xf1, 0xfc,
        0x67, 0x6a, 0x7d, 0x70, 0x53, 0x5e, 0x49, 0x44,
        0x0f, 0x02, 0x15, 0x18, 0x3b, 0x36, 0x21, 0x2c,
        0x0c, 0x01, 0x16, 0x1b, 0x38, 0x35, 0x22, 0x2f,
        0x64, 0x69, 0x7e, 0x73, 0x50, 0x5d, 0x4a, 0x47,
        0xdc, 0xd1, 0xc6, 0xcb, 0xe8, 0xe5, 0xf2, 0xff,
        0xb4, 0xb9, 0xae, 0xa3, 0x80, 0x8d, 0x9a, 0x97,
    ], [
        0x00, 0x0e, 0x1c, 0x12, 0x38, 0x36, 0x24, 0x2a,
        0x70, 0x7e, 0x6c, 0x62, 0x48, 0x46, 0x54, 0x5a,
        0xe0, 0xee, 0xfc, 0xf2, 0xd8, 0xd6, 0xc4, 0xca,
        0x90, 0x9e, 0x8c, 0x82, 0xa8, 0xa6, 0xb4, 0xba,
        0xdb, 0xd5, 0xc7, 0xc9, 0xe3, 0xed, 0xff, 0xf1,
        0xab, 0xa5, 0xb7, 0xb9, 0x93, 0x9d, 0x8f, 0x81,
        0x3b, 0x35, 0x27, 0x29, 0x03, 0x0d, 0x1f, 0x11,
        0x4b, 0x45, 0x57, 0x59, 0x73, 0x7d, 0x6f, 0x61,
        0xad, 0xa3, 0xb1, 0xbf, 0x95, 0x9b, 0x89, 0x87,
        0xdd, 0xd3, 0xc1, 0xcf, 0xe5, 0xeb, 0xf9, 0xf7,
        0x4d, 0x43, 0x51, 0x5f, 0x75, 0x7b, 0x69, 0x67,
        0x3d, 0x33, 0x21, 0x2f, 0x05, 0x0b, 0x19, 0x17,
        0x76, 0x78, 0x6a, 0x64, 0x4e, 0x40, 0x52, 0x5c,
        0x06, 0x08, 0x1a, 0x14, 0x3e, 0x30, 0x22, 0x2c,
        0x96, 0x98, 0x8a, 0x84, 0xae, 0xa0, 0xb2, 0xbc,
        0xe6, 0xe8, 0xfa, 0xf4, 0xde, 0xd0, 0xc2, 0xcc,
        0x41, 0x4f, 0x5d, 0x53, 0x79, 0x77, 0x65, 0x6b,
        0x31, 0x3f, 0x2d, 0x23, 0x09, 0x07, 0x15, 0x1b,
        0xa1, 0xaf, 0xbd, 0xb3, 0x99, 0x97, 0x85, 0x8b,
        0xd1, 0xdf, 0xcd, 0xc3, 0xe9, 0xe7, 0xf5, 0xfb,
        0x9a, 0x94, 0x86, 0x88, 0xa2, 0xac, 0xbe, 0xb0,
        0xea, 0xe4, 0xf6, 0xf8, 0xd2, 0xdc, 0xce, 0xc0,
        0x7a, 0x74, 0x66, 0x68, 0x42, 0x4c, 0x5e, 0x50,
        0x0a, 0x04, 0x16, 0x18, 0x32, 0x3c, 0x2e, 0x20,
        0xec, 0xe2, 0xf0, 0xfe, 0xd4, 0xda, 0xc8, 0xc6,
        0x9c, 0x92, 0x80, 0x8e, 0xa4, 0xaa, 0xb8, 0xb6,
        0x0c, 0x02, 0x10, 0x1e, 0x34, 0x3a, 0x28, 0x26,
        0x7c, 0x72, 0x60, 0x6e, 0x44, 0x4a, 0x58, 0x56,
        0x37, 0x39, 0x2b, 0x25, 0x0f, 0x01, 0x13, 0x1d,
        0x47, 0x49, 0x5b, 0x55, 0x7f, 0x71, 0x63, 0x6d,
        0xd7, 0xd9, 0xcb, 0xc5, 0xef, 0xe1, 0xf3, 0xfd,
        0xa7, 0xa9, 0xbb, 0xb5, 0x9f, 0x91, 0x83, 0x8d,
    ]]

    def mix_columns(self, state, inverted=False):

        def mix_column(column):
            if not inverted:
                m = [2, 1, 1, 3]
            else:
                m = [14, 9, 13, 11]

            c = bytearray(i for i in column)
            g = lambda a, b: self.galois_multiplication[b][a]

            column[0] = (g(c[0], m[0]) ^ g(c[3], m[1]) ^
                         g(c[2], m[2]) ^ g(c[1], m[3]))
            column[1] = (g(c[1], m[0]) ^ g(c[0], m[1]) ^
                         g(c[3], m[2]) ^ g(c[2], m[3]))
            column[2] = (g(c[2], m[0]) ^ g(c[1], m[1]) ^
                         g(c[0], m[2]) ^ g(c[3], m[3]))
            column[3] = (g(c[3], m[0]) ^ g(c[2], m[1]) ^
                         g(c[1], m[2]) ^ g(c[0], m[3]))

            return column

        for i in range(4):
            # get a column out of our column-major order matrix:
            column = state[i:i + 16:4]
            # apply mix_column to that:
            column = mix_column(column)
            # re-insert the result into the matrix array:
            state[i:i + 16:4] = column
        return state

Ancestors (in MRO)

  • AES
  • builtins.object

Class variables

var block_size

var galois_multiplication

var rcon

var rsbox

var sbox

Static methods

def __init__(

self)

def __init__(self):
    pass

def add_round_key(

self, state, expanded_key, kp)

def add_round_key(self, state, expanded_key, kp):
    # xor the state with the round key
    return self.xor(state, self.get_round_key(expanded_key, kp))

def decrypt(

self, data, key)

def decrypt(self, data, key):
    return self.start(data, key, inverted=True)

def encrypt(

self, data, key)

def encrypt(self, data, key):
    return self.start(data, key, inverted=False)

def get_round_key(

self, expanded_key, kp)

def get_round_key(self, expanded_key, kp):
    round_key = bytearray(16)
    for i in range(4):
        for j in range(4):
            round_key[j * 4 + i] = expanded_key[kp + i * 4 + j]
    return round_key

def main(

self, state, expanded_key, n_rounds, inverted=False)

def main(self, state, expanded_key, n_rounds, inverted=False):
    # i is used as the round key pointer (kp)
    # and the iteration is reversed on decryption
    # initial round:
    x = (16 * n_rounds) if inverted else 0
    state = self.add_round_key(state, expanded_key, x)
    # normal rounds:
    for i in (range(n_rounds - 1, 0, -1)
              if inverted else range(1, n_rounds)):
        if inverted:
            state = self.shift_rows(state, inverted)
            state = self.sub_bytes(state, inverted)
            state = self.add_round_key(state, expanded_key, 16 * i)
            state = self.mix_columns(state, inverted)
        else:
            state = self.sub_bytes(state, inverted)
            state = self.shift_rows(state, inverted)
            state = self.mix_columns(state, inverted)
            state = self.add_round_key(state, expanded_key, 16 * i)
    # final round
    state = self.sub_bytes(state, inverted)
    state = self.shift_rows(state, inverted)
    x = (16 * n_rounds) if not inverted else 0
    state = self.add_round_key(state, expanded_key, x)
    return state

def mix_columns(

self, state, inverted=False)

def mix_columns(self, state, inverted=False):
    def mix_column(column):
        if not inverted:
            m = [2, 1, 1, 3]
        else:
            m = [14, 9, 13, 11]
        c = bytearray(i for i in column)
        g = lambda a, b: self.galois_multiplication[b][a]
        column[0] = (g(c[0], m[0]) ^ g(c[3], m[1]) ^
                     g(c[2], m[2]) ^ g(c[1], m[3]))
        column[1] = (g(c[1], m[0]) ^ g(c[0], m[1]) ^
                     g(c[3], m[2]) ^ g(c[2], m[3]))
        column[2] = (g(c[2], m[0]) ^ g(c[1], m[1]) ^
                     g(c[0], m[2]) ^ g(c[3], m[3]))
        column[3] = (g(c[3], m[0]) ^ g(c[2], m[1]) ^
                     g(c[1], m[2]) ^ g(c[0], m[3]))
        return column
    for i in range(4):
        # get a column out of our column-major order matrix:
        column = state[i:i + 16:4]
        # apply mix_column to that:
        column = mix_column(column)
        # re-insert the result into the matrix array:
        state[i:i + 16:4] = column
    return state

def rijndael_key_schedule(

self, key)

def rijndael_key_schedule(self, key):
    def rijndael_key_schedule_core(key_word, rcon_iteration):
        # rotate eight bits to the left:
        key_word = self.rotate(key_word)
        # apply the s-box to all 4 bytes:
        key_word = bytearray(self.sbox[i] for i in key_word)
        # xor the first byte with the rcon value for the current iteration
        key_word[0] = key_word[0] ^ self.rcon[rcon_iteration]
        return key_word
    # define constants for the length of the key
    # and length of the expanded key, n and b:
    if len(key) == 16:
        n, b = 16, 176
    elif len(key) == 24:
        n, b = 24, 208
    elif len(key) == 32:
        n, b = 32, 240
    else:
        raise ValueError("key must be 16, 24 or 32 bytes long")
    # the expanded key has the length b, and it's
    # first n bytes are the encryption key itself:
    expanded_key = bytearray(b)
    expanded_key[:len(key)] = key
    current_size = len(key)
    rcon_iteration = 1
    while current_size < b:
        # adding 4 bytes to the expanded key, starting
        # with the value of the previous 4 bytes in the
        # expanded key:
        # expanded_key is the expanded key, cs is the current size of it
        # t is the previous 4 bytes in the expanded key:
        t = expanded_key[current_size - 4:current_size]
        # perform the key schedule core on t:
        t = rijndael_key_schedule_core(t, rcon_iteration)
        rcon_iteration += 1
        # exclusive-or t with the 4 bytes before the expanded key
        # and make that the next 4 bytes of the expanded key:
        expanded_key[current_size:current_size + 4] = self.xor(
            expanded_key[current_size - n:current_size - n + 4], t)
        current_size += 4
        for i in range(3):
            t = expanded_key[current_size - 4:current_size]  # 1
            expanded_key[current_size:current_size + 4] = self.xor(
                expanded_key[current_size - n:current_size - n + 4], t)
            current_size += 4
        if n == 32:  # if we're generating a 256 bit key
            t = expanded_key[current_size - 4:current_size]  # 1
            # run each of the 4 bytes through the rijdael s-box:
            t = bytearray(self.sbox[i] for i in t)
            expanded_key[current_size:current_size + 4] = self.xor(
                expanded_key[current_size - n:current_size - n + 4], t)
            current_size += 4
        # if we're generating a 128 bit key, don't do the next step,
        # do it 2 times for a 192 bit key, 3 times for a 256 bit key:
        for i in range(0 if n == 16 else 2 if n == 24 else 3):
            t = expanded_key[current_size - 4:current_size]  # 1
            expanded_key[current_size:current_size + 4] = self.xor(
                expanded_key[current_size - n:current_size - n + 4], t)
            current_size += 4
    # because of the last step, the expanded key might be too long:
    return expanded_key[:b]

def rotate(

word)

rotate a sequence of bytes eight bits to the left

@staticmethod
def rotate(word):
    ''' rotate a sequence of bytes eight bits to the left '''
    return word[1:] + word[:1]

def shift_rows(

self, state, inverted=False)

def shift_rows(self, state, inverted=False):
    # transform our column-major order array back into a matrix:
    matrix = [bytearray(4) for i in range(4)]
    for i in range(4):
        for j in range(4):
            matrix[i][j] = state[(i * 4) + j]
    if not inverted:
        # each byte of the nth row is shifted n to the left (0, 1, 2, 3):
        matrix[1] = matrix[1][1:] + matrix[1][:1]
        matrix[2] = matrix[2][2:] + matrix[2][:2]
        matrix[3] = matrix[3][3:] + matrix[3][:3]
    else:
        # each byte of the nth row is shifted n to the left (0, 1, 2, 3):
        matrix[1] = matrix[1][-1:] + matrix[1][:-1]
        matrix[2] = matrix[2][-2:] + matrix[2][:-2]
        matrix[3] = matrix[3][-3:] + matrix[3][:-3]
    # transform the matrix back to column-major order:
    state = bytearray(16)
    for i in range(4):
        for j in range(4):
            state[(i + (j * 4))] = matrix[j][i]
    return state

def start(

self, data, key, inverted=False)

def start(self, data, key, inverted=False):
    # determine the number of rounds and raise
    # an exception for wrongly sized keys:
    if len(key) == 16:
        n_rounds = 10
    elif len(key) == 24:
        n_rounds = 12
    elif len(key) == 32:
        n_rounds = 14
    else:
        raise ValueError("key must be 16, 24 or 32 bytes long")
    # empty bytearrays for our current block and the result,
    # bytearrays are the mutable version of <type 'bytes'>:
    block, result = bytearray(16), bytearray(16)
    # get the expanded key from the rijndael key schedule:
    expanded_key = self.rijndael_key_schedule(key)
    # aes operates on a 4 by 4 matrix, the state, which is
    # stored as a flat array in column-major order, such that
    # [[1, 2, 3], [4, 5, 6]] becomes [1, 4, 2, 5, 3, 6]:
    for i in range(4):
        for j in range(4):
            block[(i + (j * 4))] = data[(i * 4) + j]
    # initial round and start of the aes process:
    block = self.main(block, expanded_key, n_rounds, inverted)
    # here we turn the flat matrix back into a linear array
    # from column-major order:
    for k in range(4):
        for l in range(4):
            result[(k * 4) + l] = block[(k + (l * 4))]
    # return the result as an immutable bytes object:
    return bytes(result)

def sub_bytes(

self, state, inverted=False)

def sub_bytes(self, state, inverted=False):
    # substitute values for sbox values
    if not inverted:
        return bytearray(self.sbox[i] for i in state)
    else:
        return bytearray(self.rsbox[i] for i in state)

def xor(

a, b)

bitwise xor on equal length bytearrays

@staticmethod
def xor(a, b):
    ''' bitwise xor on equal length bytearrays '''
    return bytearray(i ^ j for i, j in zip(a, b))