Multi class version of Logarithmic Loss metric.
Parameters: |
|
---|
Create a learning curve that uses more training cases with each step.
Parameters: |
|
---|---|
Result: | 3-tuple with lists scores_train, scores_test, sizes |
Drawing the resulting learning curve can be done like this:
dataset = Dataset()
clf = LogisticRegression()
scores_train, scores_test, sizes = learning_curve(dataset, clf)
pl.plot(sizes, scores_train, 'b', label='training set')
pl.plot(sizes, scores_test, 'r', label='test set')
pl.legend(loc='lower right')
pl.show()
Same as learning_curve() but uses multiclass_logloss() as the loss funtion.