Evaluate Neural Networks
To evaluate a neural network means to propagate input through the network
and get the output of the network.
Evaluate a neural network.
-
nntoolkit.evaluate.get_model_output(model, x)[source]
Parameters: |
- model – A dictionary which represents a model
- x – An input vector
|
Returns: | The output vector of the model
|
-
nntoolkit.evaluate.get_parser()[source]
Return the parser object for this script.
-
nntoolkit.evaluate.get_results(model_output, output_semantics)[source]
Parameters: |
- model_output – A list of probabilities
- output_semantics – A list of semantics
|
Returns: | A list of dictionaries which have probability and semantics as
keys.
|
-
nntoolkit.evaluate.main(modelfile, features, print_results=True)[source]
Evaluate the model described in modelfile with inputvec as
input data.
Parameters: |
- features – List of floats
- print_results – Print results if True. Always return results.
|
Returns: | List of possible answers, reverse-sorted by probability.
|
-
nntoolkit.evaluate.main_bash(modelfile, inputvec_file, print_results=True)[source]
- Evaluate the model described in modelfile with inputvec_file as
- input data.
Parameters: |
- inputvec_file – File with json content. The content is a list with
one list as element. This list contains floats.
- print_results – Print results if True. Always return results.
|
-
nntoolkit.evaluate.show_results(results, n=10, print_results=True)[source]
Show the top-n results of a classification.