Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework to create and explore other neural network types.
Features: |
|
---|---|
Example: | >>> import numpy as np
>>> import neurolab as nl
>>> # Create train samples
>>> input = np.random.uniform(-0.5, 0.5, (10, 2))
>>> target = (input[:, 0] + input[:, 1]).reshape(10, 1)
>>> # Create network with 2 inputs, 5 neurons in input layer and 1 in output layer
>>> net = nl.net.newff([[-0.5, 0.5], [-0.5, 0.5]], [5, 1])
>>> # Train process
>>> err = net.train(input, target, show=15)
Epoch: 15; Error: 0.150308402918;
Epoch: 30; Error: 0.072265865089;
Epoch: 45; Error: 0.016931355131;
The goal of learning is reached
>>> # Test
>>> net.sim([[0.2, 0.1]]) # 0.2 + 0.1
array([[ 0.28757596]])
|
Links: |
- Single layer perceptron
- create function: neurolab.net.newp()
- example of use: newp
- default train function: neurolab.train.train_delta()
- support train functions: train_gd, train_gda, train_gdm, train_gdx, train_rprop, train_bfgs, train_cg
- Multilayer feed forward perceptron
- create function: neurolab.net.newff()
- example of use: newff
- default train function: neurolab.train.train_gdx()
- support train functions: train_gd, train_gda, train_gdm, train_rprop, train_bfgs, train_cg
- Competing layer (Kohonen Layer)
- create function: neurolab.net.newc()
- example of use: newc
- default train function: neurolab.train.train_cwta()
- support train functions: train_wta
- Learning Vector Quantization (LVQ)
- create function: neurolab.net.newlvq()
- example of use: newlvq
- default train function: neurolab.train.train_lvq()
- Elman Recurrent network
- create function: neurolab.net.newelm()
- example of use: newelm
- default train function: neurolab.train.train_gdx()
- support train functions: train_gd, train_gda, train_gdm, train_rprop, train_bfgs, train_cg
- Hopfield Recurrent network
- create function: neurolab.net.newhop()
- example of use: newhop
- Hemming Recurrent network
- create function: neurolab.net.newhem()
- example of use: newhem