Survival function ================= .. py:function:: bdtrc(k, n, p) Returns the sum of the terms k + 1 through n of the Binomial probability density: :param int k: number of successes within [0, n] :param int n: number of trials :param float p: probability of success within [0, 1] See also :py:func:`bdtr` and :py:func:`bdtri`. Description ----------- .. math:: \sum_{j=k+1}^n {n \choose j} p^j (1-p)^{n-j} The terms are not summed directly; instead the incomplete beta integral is employed, according to the formula:: y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ) The arguments must be positive, with p ranging from 0 to 1. Accuracy -------- Tested at random points (a, b, p). +----------+------+--------+---------------+ | | a, b | |relative error | +----------+------+--------+-------+-------+ |arithmetic|domain|# trials|peak |rms | +==========+======+========+=======+=======+ |For p between 0.001 and 1 | +----------+------+--------+-------+-------+ |IEEE |0, 100|100000 |6.7e-15|8.2e-16| +----------+------+--------+-------+-------+ |For p between 0 and .001 | +----------+------+--------+-------+-------+ |IEEE |0, 100|100000 |1.5e-13|2.7e-15| +----------+------+--------+-------+-------+ Error messages -------------- +------------+-------------------+--------------+ |message |condition |value returned| +============+===================+==============+ |bdtrc domain|x < 0, x > 1, n < k|0.0 | +------------+-------------------+--------------+ Reference: http://www.netlib.org/cephes/doubldoc.html#bdtrc