Cumulative distribution function ================================ .. py:function:: bdtr(k, n, p) Returns the sum of the terms 0 through k of the Binomial probability density. The function is defined as: :param int k: number of successes within [0, n] :param int n: number of trials :param float p: probability of success within [0, 1] See also :py:func:`bdtrc` and :py:func:`bdtri`. Description ----------- .. math:: \sum_{j=0}^k {n \choose j} p^j (1-p)^{n-j} The terms are not summed directly; instead the incomplete beta integral is employed, according to the formula:: y = bdtr(k, n, p) = incbet(n - k, k +1, 1 - p) The arguments must be positive, with p ranging from 0 to 1. Accuracy -------- Tested at random points (a, b, p), with p between 0 and 1. +----------+------+--------+---------------+ | | a, b | |relative error | +----------+------+--------+-------+-------+ |arithmetic|domain|# trials|peak |rms | +==========+======+========+=======+=======+ |For p between 0.001 and 1 | +----------+------+--------+-------+-------+ |IEEE |0, 100|100000 |4.3e-15|2.6e-16| +----------+------+--------+-------+-------+ See also :py:func:`incbi`. Error messages -------------- +-----------+------------+--------------+ |message |condition |value returned| +===========+============+==============+ |bdtr domain|k < 0 |0.0 | + +------------+ + | |n < k | | + +------------+ + | |x < 0, x > 1| | +-----------+------------+--------------+ Reference: http://www.netlib.org/cephes/doubldoc.html#bdtr