maxvol submodule¶
This submodule contains routines to find good submatrices. How good matrix is depends on special extreme properties of the matrix. Two of this properties are 1-volume and 2-volume with the following formulas:
vol1(A)=|det
Square 1-volume optimization¶
maxvol (A[, tol, max_iters, top_k_index]) |
Finds good square submatrix. |
maxvol_qr (A[, tol, max_iters, top_k_index]) |
Finds good square submatrix in Q factor of QR of A. |
maxvol_svd (A[, svd_tol, svd_alpha, tol, ...]) |
Applies SVD truncation and finds good square submatrix. |
Rectangular 2-volume optimization¶
rect_maxvol (A[, tol, maxK, min_add_K, minK, ...]) |
Finds good rectangular submatrix. |
rect_maxvol_qr (A[, tol, maxK, min_add_K, ...]) |
Finds good rectangular submatrix in Q factor of QR of A. |
rect_maxvol_svd (A[, svd_tol, svd_alpha, ...]) |
Applies SVD truncation and finds good rectangular submatrix. |