maxvol submodule

This submodule contains routines to find good submatrices. How good matrix is depends on special extreme properties of the matrix. Two of this properties are 1-volume and 2-volume with the following formulas:

vol1(A)=|det

Square 1-volume optimization

maxvol(A[, tol, max_iters, top_k_index]) Finds good square submatrix.
maxvol_qr(A[, tol, max_iters, top_k_index]) Finds good square submatrix in Q factor of QR of A.
maxvol_svd(A[, svd_tol, svd_alpha, tol, ...]) Applies SVD truncation and finds good square submatrix.

Rectangular 2-volume optimization

rect_maxvol(A[, tol, maxK, min_add_K, minK, ...]) Finds good rectangular submatrix.
rect_maxvol_qr(A[, tol, maxK, min_add_K, ...]) Finds good rectangular submatrix in Q factor of QR of A.
rect_maxvol_svd(A[, svd_tol, svd_alpha, ...]) Applies SVD truncation and finds good rectangular submatrix.