This is an example input file for a “hybrid” Bayesian network, i.e., one with varying types of conditional probability distributions. It provides hybrid CPD data for the same graph skeleton as in the discrete case:
{
"Vdata": {
"Grade": {
"parents": [
"Difficulty",
"Intelligence"
],
"type": "lgandd",
"children": [
"Letter"
],
"hybcprob": {
"['high']": {
"variance": 10,
"mean_base": 20,
"mean_scal": [
1
]
},
"['low']": {
"variance": 10,
"mean_base": 10,
"mean_scal": [
1
]
}
}
},
"Intelligence": {
"numoutcomes": 2,
"cprob": [
0.9,
0.1
],
"parents": null,
"vals": [
"low",
"high"
],
"type": "discrete",
"children": [
"SAT",
"Grade"
]
},
"Difficulty": {
"mean_base": 50,
"mean_scal": [],
"parents": null,
"variance": 18,
"type": "lg",
"children": [
"Grade"
]
},
"Letter": {
"mean_base": -110,
"mean_scal": [
2
],
"parents": [
"Grade"
],
"variance": 10,
"type": "lg",
"children": null
},
"SAT": {
"parents": [
"Intelligence"
],
"crazyinput": 7,
"type": "crazy"
}
}
}