Python implementation of ModelGrid, a base class used to create and manage grids for 2D numerical models.
Do NOT add new documentation here. Grid documentation is now built in a semi- automated fashion. To modify the text seen on the web, edit the files docs/text_for_[gridfile].py.txt.
ACTIVE_LINK
= 0¶Indicates a link is active, and can carry flux
BAD_INDEX_VALUE
= -1¶Indicates an index is, in some way, bad.
CLOSED_BOUNDARY
= 4¶Indicates a boundary node is closed
CORE_NODE
= 0¶Indicates a node is core.
FIXED_GRADIENT_BOUNDARY
= 2¶Indicates a boundary node is has a fixed gradient.
FIXED_LINK
= 2¶Indicates a link has a fixed (gradient) value, & behaves as a boundary
FIXED_VALUE_BOUNDARY
= 1¶Indicates a boundary node is has a fixed values.
INACTIVE_LINK
= 4¶Indicates a link is inactive, and cannot carry flux
LOOPED_BOUNDARY
= 3¶Indicates a boundary node is wrap-around.
ModelGrid
(**kwds)[source]¶Bases: landlab.field.field_mixin.ModelDataFieldsMixIn
Base class for 2D structured or unstructured grids for numerical models.
The idea is to have at least two inherited
classes, RasterModelGrid and DelaunayModelGrid, that can create and
manage grids. To this might be added a GenericModelGrid, which would
be an unstructured polygonal grid that doesn’t necessarily obey or
understand the Delaunay triangulation, but rather simply accepts
an input grid from the user. Also a HexModelGrid
for hexagonal.
Attributes
axis_name |
Get the name of each coordinate axis. |
axis_units |
Get units for each axis. |
at_node | (dict-like) Values at nodes. |
at_cell | (dict-like) Values at cells. |
at_link | (dict-like) Values at links. |
at_face | (dict-like) Values at faces. |
at_grid: dict-like | Global values |
Other Parameters | |
active_faces
¶Get array of active faces.
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((3, 4))
>>> grid.active_faces
array([0, 1, 2, 3, 4, 5, 6])
>>> from landlab import CLOSED_BOUNDARY
>>> grid.status_at_node[6] = CLOSED_BOUNDARY
>>> grid.active_faces
array([0, 2, 5])
LLCATS: FINF BC
active_link_connecting_node_pair
(*args, **kwargs)[source]¶Get the active link that connects a pair of nodes.
Note
This method is deprecated as of Landlab version 1.0.
Use no replacement()
instead.
Returns the ID number of the active link that connects the given pair of nodes, or BAD_INDEX_VALUE if not found. This method is slow, and can only take single ints as node1 and node2. It should ideally be overridden for optimal functionality in more specialized grid modules (e.g., raster).
Examples
>>> import landlab as ll
>>> rmg = ll.RasterModelGrid((4, 5))
>>> rmg.active_link_connecting_node_pair(8, 3)
array([2])
LLCATS: DEPR LINF NINF CONN
active_link_dirs_at_node
¶Link flux directions at each node: 1=incoming flux, -1=outgoing flux, 0=no flux. Note that inactive links receive zero, but active and fixed links are both reported normally.
Returns: | (NODES, LINKS) ndarray of int
|
---|
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> grid = RasterModelGrid((4, 3))
>>> grid.status_at_node[grid.nodes_at_left_edge] = CLOSED_BOUNDARY
>>> grid.active_link_dirs_at_node
array([[ 0, 0, 0, 0], [ 0, -1, 0, 0], [ 0, 0, 0, 0],
[ 0, 0, 0, 0], [-1, -1, 0, 1], [ 0, 0, 1, 0],
[ 0, 0, 0, 0], [-1, -1, 0, 1], [ 0, 0, 1, 0],
[ 0, 0, 0, 0], [ 0, 0, 0, 1], [ 0, 0, 0, 0]],
dtype=int8)
LLCATS: NINF LINF CONN
active_links
¶Get array of active links.
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((3, 4))
>>> grid.active_links
array([ 4, 5, 7, 8, 9, 11, 12])
LLCATS: LINF BC
active_neighbors_at_node
¶Get list of neighbor node IDs.
Return lists of neighbor nodes, where the neighbor is connected by an active link. For each node, the list gives neighbor ids as [right, top, left, bottom]. Nodes at the end of inactive links or nodes in missing positions get BAD_INDEX_VALUE.
Examples
>>> from landlab.grid.base import BAD_INDEX_VALUE as X
>>> from landlab import RasterModelGrid, HexModelGrid, CLOSED_BOUNDARY
>>> rmg = RasterModelGrid((4, 5))
>>> np.array_equal(rmg.active_neighbors_at_node[[-1, 6, 2]],
... [[X, X, X, X], [ 7, 11, 5, 1], [X, 7, X, X]])
True
>>> rmg.active_neighbors_at_node[7]
array([ 8, 12, 6, 2])
>>> rmg.active_neighbors_at_node[2]
array([-1, 7, -1, -1])
>>> hmg = HexModelGrid(3, 2)
>>> hmg.status_at_node[0] = CLOSED_BOUNDARY
>>> hmg.active_neighbors_at_node
array([[-1, -1, -1, -1, -1, -1],
[-1, 3, -1, -1, -1, -1],
[ 3, -1, -1, -1, -1, -1],
[ 4, 6, 5, 2, -1, 1],
[-1, 3, -1, -1, -1, -1],
[-1, -1, 3, -1, -1, -1],
[-1, 3, -1, -1, -1, -1]])
LLCATS: NINF CONN BC
all_node_azimuths_map
¶Get azimuths from every node to every other node.
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((3, 4))
>>> angles = grid.all_node_azimuths_map
The shape of the array is number_of_nodes
by number_of_nodes
and azimuth from a node to itself is zero.
>>> angles.shape == (grid.number_of_nodes, grid.number_of_nodes)
True
>>> angles.diagonal()
array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
Angles are measured in radians and increase clockwise starting at north.
>>> angles *= 180. / np.pi
>>> angles[0, :4]
array([ 0., 90., 90., 90.])
>>> angles[0, ::4]
array([ 0., 0., 0.])
>>> angles[0, ::5]
array([ 0., 45., 45.])
LLCATS: NINF MEAS
all_node_distances_map
¶Get distances from every node to every other node.
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((3, 4))
>>> distances = grid.all_node_distances_map
The shape of the array is number_of_nodes
by number_of_nodes
and distance from a node to itself is zero.
>>> distances.shape == (grid.number_of_nodes, grid.number_of_nodes)
True
>>> distances.diagonal()
array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
The distances from the first node to all nodes in its row and all the nodes in its column.
>>> distances[0, :4]
array([ 0., 1., 2., 3.])
>>> distances[0, ::4]
array([ 0., 1., 2.])
LLCATS: NINF MEAS
angle_of_link
¶Find and return the angle of a link about the node at the link tail.
Examples
>>> from landlab import HexModelGrid
>>> mg = HexModelGrid(3, 2)
>>> mg.angle_of_link / np.pi * 3. # 60 degree segments
array([ 0., 2., 1., 2., 1., 0., 0., 1., 2., 1., 2., 0.])
LLCATS: LINF MEAS
angle_of_link_about_head
¶Find and return the angle of a link about the node at the link head.
Because links have direction, their angle can be specified as an angle about either the node at the link head, or the node at the link tail. The default behaviour of angle_of_link is to return the angle about the link tail, but this method gives the angle about the link head.
Examples
>>> from landlab import HexModelGrid
>>> mg = HexModelGrid(3, 2)
>>> mg.angle_of_link_about_head[:3] / np.pi * 3. # 60 deg segments
array([ 3., 5., 4.])
LLCATS: LINF MEAS
area_of_cell
¶Get areas of grid cells.
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((4, 5), spacing=(2, 3))
>>> grid.area_of_cell
array([ 6., 6., 6.,
6., 6., 6.])
LLCATS: CINF MEAS
at_cell
= {}¶at_corner
= {}¶at_face
= {}¶at_link
= {}¶at_node
= {}¶at_patch
= {}¶axis_name
¶Get the name of each coordinate axis.
Returns: | tuple of str
|
---|
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((4, 5))
>>> grid.axis_name
('y', 'x')
>>> grid.axis_name = ('lon', 'lat')
>>> grid.axis_name
('lon', 'lat')
LLCATS: GINF
axis_units
¶Get units for each axis.
Returns: | tuple of str
|
---|
Examples
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5), (2., 3.))
>>> mg.axis_units
('-', '-')
>>> mg.axis_units = ('km', 'km')
>>> mg.axis_units
('km', 'km')
LLCATS: GINF
boundary_nodes
¶Get array of boundary nodes.
Examples
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5), 1.)
>>> mg.boundary_nodes
array([ 0, 1, 2, 3, 4, 5, 9, 10, 14, 15, 16, 17, 18, 19])
LLCATS: NINF BC
calc_aspect_at_node
(grid, slope_component_tuple=None, elevs='topographic__elevation', unit='degrees', ignore_closed_nodes=True)¶Get array of aspect of a surface.
Calculates at returns the aspect of a surface. Aspect is returned as radians clockwise of north, unless input parameter units is set to ‘degrees’.
If slope_component_tuple is provided, i.e., (slope_x, slope_y), the aspect will be calculated from these data.
If it is not, it will be derived from elevation data at the nodes, which can either be a string referring to a grid field (default: ‘topographic__elevation’), or an nnodes-long numpy array of the values themselves.
If ignore_closed_nodes is False, all proximal elevation values will be used in the calculation. If True, only unclosed nodes are used.
Parameters: | slope_component_tuple : (slope_x_array, slope_y_array) (optional)
elevs : str or array (optional)
unit : {‘degrees’, ‘radians’}
ignore_closed_nodes : bool
|
---|
Examples
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 4))
>>> z = mg.node_x ** 2 + mg.node_y ** 2
>>> mg.calc_aspect_at_node(elevs=z)
array([ 225. , 240.16585039, 255.2796318 , 258.69006753,
209.83414961, 225. , 243.54632481, 248.77808974,
194.7203682 , 206.45367519, 225. , 231.94498651,
191.30993247, 201.22191026, 218.05501349, 225. ])
>>> z = z.max() - z
>>> mg.calc_aspect_at_node(elevs=z)
array([ 45. , 60.16585039, 75.2796318 , 78.69006753,
29.83414961, 45. , 63.54632481, 68.77808974,
14.7203682 , 26.45367519, 45. , 51.94498651,
11.30993247, 21.22191026, 38.05501349, 45. ])
>>> mg = RasterModelGrid((4, 4), (2., 3.))
>>> z = mg.node_x ** 2 + mg.node_y ** 2
>>> mg.calc_aspect_at_node(elevs=z)
array([ 236.30993247, 247.52001262, 259.97326008, 262.40535663,
220.75264634, 234.41577266, 251.13402374, 255.29210302,
201.54258265, 215.47930877, 235.73541937, 242.24162456,
196.69924423, 209.43534223, 229.19345757, 236.30993247])
Note that a small amount of asymmetry arises at the grid edges due to the “missing” nodes beyond the edge of the grid.
LLCATS: NINF SURF
calc_diff_at_link
(grid, vals, *args, **kwds)¶Calculate differences of node values over links.
Calculates the difference in quantity node_values at each link in the grid.
Construction:
grid.calc_diff_at_link(node_values, out=None)
Parameters: | node_values : ndarray or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 3))
>>> z = np.zeros(9)
>>> z[4] = 1.
>>> rmg.calc_diff_at_link(z)
array([ 0., 0., 0., 1., 0., 1., -1., 0., -1., 0., 0., 0.])
LLCATS: LINF GRAD
calc_distances_of_nodes_to_point
(coord, get_az=None, node_subset=None, out_distance=None, out_azimuth=None)[source]¶Get distances for nodes to a given point.
Returns an array of distances for each node to a provided point. If “get_az” is set to ‘angles’, returns both the distance array and an array of azimuths from up/north. If it is set to ‘displacements’, it returns the azimuths as a 2xnnodes array of x and y displacements. If it is not set, returns just the distance array.
If “node_subset” is set as an ID, or list/array/etc of IDs method returns just the distance (and optionally azimuth) for that node. Point is provided as a tuple (x,y).
If out_distance (& out_azimuth) are provided, these arrays are used to store the outputs. This is recommended for memory management reasons if you are working with node subsets.
Note
Angles are returned in radians but measured clockwise from north.
Parameters: | coord : tuple of float
get_az: {None, ‘angles’, ‘displacements’}, optional
node_subset : array_like, optional
out_distance : array_like, optional
out_azimuth : array_like, optional
|
---|---|
Returns: | ndarray or tuple of ndarray
|
Notes
Once you start working with node subsets in Landlab, which can change size between loops, it’s quite possible for Python’s internal memory management to crap out after large numbers of loops (~>10k). This is to do with the way it block allocates memory for arrays of differing lengths, then cannot free this memory effectively. The solution - as implemented here - is to pre-allocate all arrays as nnodes long, then only work with the first [len_subset] entries by slicing (in a pseudo-C-style). Care has to be taken not to “accidentally” allow Python to allocate a new array you don’t have control over. Then, to maintain efficient memory allocation, we create some “dummy” nnode-long arrays to store intermediate parts of the solution in.
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((4, 5))
Calculate distances from point at (2., 1.) to a subset of nodes on the grid.
>>> grid.calc_distances_of_nodes_to_point((2, 1),
... node_subset=(2, 6, 7, 8, 12))
array([ 1., 1., 0., 1., 1.])
Calculate distances from a point to all nodes on the grid.
>>> dist = grid.calc_distances_of_nodes_to_point((2, 1))
>>> dist.shape == (grid.number_of_nodes, )
True
>>> dist.take((2, 6, 7, 8, 12))
array([ 1., 1., 0., 1., 1.])
Put the distances into a buffer.
>>> out = np.empty(grid.number_of_nodes, dtype=float)
>>> dist = grid.calc_distances_of_nodes_to_point((2, 1),
... out_distance=out)
>>> out is dist
True
>>> out.take((2, 6, 7, 8, 12))
array([ 1., 1., 0., 1., 1.])
Calculate azimuths along with distances. The azimuths are calculated in radians but measured clockwise from north.
>>> (_, azim) = grid.calc_distances_of_nodes_to_point((2, 1),
... get_az='angles')
>>> azim.take((2, 6, 7, 8, 12)) * 180. / np.pi
array([ 180., 270., 0., 90., 0.])
>>> (_, azim) = grid.calc_distances_of_nodes_to_point((2, 1),
... get_az='angles', node_subset=(1, 3, 11, 13))
>>> azim * 180. / np.pi
array([ 225., 135., 315., 45.])
When calculating displacements, the first row contains displacements in x and the second displacements in y.
>>> (_, azim) = grid.calc_distances_of_nodes_to_point((2, 1),
... get_az='displacements', node_subset=(2, 6, 7, 8, 12))
>>> azim
array([[ 0., -1., 0., 1., 0.],
[-1., 0., 0., 0., 1.]])
LLCATS: NINF MEAS
calc_flux_div_at_cell
(grid, vals, *args, **kwds)¶Calculate divergence of link-based fluxes at cells.
This function is very similar to the function calc_flux_div_at_node.
Given a flux per unit width across each cell face in the grid, calculate the net outflux (or influx, if negative) divided by cell area, at each cell.
Construction:
grid.calc_flux_div_at_cell(unit_flux_at_links_across_faces, out=None)
Parameters: | unit_flux_at_links_across_faces : ndarray or field name
|
---|---|
Returns: | ndarray (x number of cells)
|
Notes
Performs a numerical flux divergence operation at cells.
LLCATS: NINF GRAD
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> from landlab.grid.divergence import calc_flux_div_at_cell
>>> rg = RasterModelGrid(3, 4, 10.0)
>>> import numpy as np
>>> z = rg.add_zeros('node', 'topographic__elevation')
>>> z[5] = 50.0
>>> z[6] = 36.0
>>> lg = rg.calc_grad_at_link(z) # there are 17 links
>>> lg
array([ 0. , 0. , 0. , 0. , 5. , 3.6, 0. , 5. , -1.4, -3.6, 0. ,
-5. , -3.6, 0. , 0. , 0. , 0. ])
>>> fg = lg[rg.link_at_face] # there are 7 faces
>>> fg
array([ 5. , 3.6, 5. , -1.4, -3.6, -5. , -3.6])
>>> calc_flux_div_at_cell(rg, -fg)
array([ 1.64, 0.94])
>>> rg.set_status_at_node_on_edges(right=CLOSED_BOUNDARY)
>>> rg.set_status_at_node_on_edges(top=CLOSED_BOUNDARY)
>>> unit_flux_at_faces = np.zeros(rg.number_of_faces)
>>> unit_flux_at_faces[rg.active_faces] = -fg[rg.active_faces]
>>> calc_flux_div_at_cell(rg, unit_flux_at_faces)
array([ 1.14, 0.22])
>>> _ = rg.add_field('neg_grad_at_link', -lg, at = 'link')
>>> calc_flux_div_at_cell(rg, 'neg_grad_at_link')
array([ 1.64, 0.94])
calc_flux_div_at_node
(grid, vals, *args, **kwds)¶Calculate divergence of link-based fluxes at nodes.
Given a flux per unit width across each face in the grid, calculate the net outflux (or influx, if negative) divided by cell area, at each node (zero or “out” value for nodes without cells).
Construction:
grid.calc_flux_div_at_node(unit_flux_at_links, out=None)
Parameters: | unit_flux : ndarray or field name
|
---|---|
Returns: | ndarray (x number of nodes)
|
Notes
Performs a numerical flux divergence operation on nodes.
LLCATS: NINF GRAD
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> from landlab.grid.divergence import calc_flux_div_at_node
>>> rg = RasterModelGrid(3, 4, 10.0)
>>> z = rg.add_zeros('node', 'topographic__elevation')
>>> z[5] = 50.0
>>> z[6] = 36.0
>>> lg = rg.calc_grad_at_link(z) # there are 17 links
>>> lg
array([ 0. , 0. , 0. , 0. , 5. , 3.6, 0. , 5. , -1.4, -3.6, 0. ,
-5. , -3.6, 0. , 0. , 0. , 0. ])
>>> calc_flux_div_at_node(rg, -lg)
array([ 0. , 0. , 0. , 0. , 0. , 1.64, 0.94, 0. , 0. ,
0. , 0. , 0. ])
>>> rg.set_status_at_node_on_edges(right=CLOSED_BOUNDARY)
>>> rg.set_status_at_node_on_edges(top=CLOSED_BOUNDARY)
>>> unit_flux_at_links = np.zeros(rg.number_of_links)
>>> unit_flux_at_links[rg.active_links] = -lg[rg.active_links]
>>> calc_flux_div_at_node(rg, unit_flux_at_links)
array([ 0. , 0. , 0. , 0. , 0. , 1.14, 0.22, 0. , 0. ,
0. , 0. , 0. ])
>>> _ = rg.add_field('neg_grad_at_link', -lg, at = 'link')
>>> calc_flux_div_at_node(rg, 'neg_grad_at_link')
array([ 0. , 0. , 0. , 0. , 0. , 1.64, 0.94, 0. , 0. ,
0. , 0. , 0. ])
calc_grad_at_active_link
(*args, **kwargs)¶Calculate gradients of node values over active links.
Calculates the gradient in quantity node values at each active link in the grid.
Construction:
grid.calc_grad_at_active_link(node_values, out=None)
Parameters: | node_values : ndarray or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
LLCATS: DEPR LINF GRAD |
calc_grad_at_link
(grid, vals, *args, **kwds)¶Calculate gradients of node values at links.
Calculates the gradient in node_values at each link in the grid, returning an array of length number_of_links.
Construction:
grid.calc_grad_at_link(node_values, out=None)
Parameters: | node_values : ndarray or field name (x number of nodes)
out : ndarray, optional (x number of links)
|
---|---|
Returns: | ndarray
|
Examples
>>> from landlab import RasterModelGrid
>>> rg = RasterModelGrid(3, 4, 10.0)
>>> z = rg.add_zeros('node', 'topographic__elevation')
>>> z[5] = 50.0
>>> z[6] = 36.0
>>> calc_grad_at_link(rg, z) # there are 17 links
array([ 0. , 0. , 0. , 0. , 5. , 3.6, 0. , 5. , -1.4, -3.6, 0. ,
-5. , -3.6, 0. , 0. , 0. , 0. ])
>>> from landlab import HexModelGrid
>>> hg = HexModelGrid(3, 3, 10.0)
>>> z = hg.add_zeros('node', 'topographic__elevation', noclobber=False)
>>> z[4] = 50.0
>>> z[5] = 36.0
>>> calc_grad_at_link(hg, z) # there are 11 faces
array([ 0. , 0. , 0. , 5. , 5. , 3.6, 3.6, 0. , 5. , -1.4, -3.6,
0. , -5. , -5. , -3.6, -3.6, 0. , 0. , 0. ])
LLCATS: LINF GRAD
calc_grad_at_patch
(grid, elevs='topographic__elevation', ignore_closed_nodes=True, unit_normal=None, slope_magnitude=None)¶Calculate the components of the gradient at each patch.
If ignore_closed_nodes is True, closed nodes do not affect gradient calculations. If a closed node is present in a patch, the patch gradient is set to zero in both x and y directions.
Parameters: | elevs : str or ndarray, optional
ignore_closed_nodes : bool
unit_normal : array with shape (num_patches, 3) (optional)
slope_magnitude : array with size num_patches (optional)
|
---|---|
Returns: | gradient_tuple : (x_component_at_patch, y_component_at_patch)
|
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5))
>>> z = mg.node_y
>>> (x_grad, y_grad) = mg.calc_grad_at_patch(elevs=z)
>>> np.allclose(y_grad, np.pi / 4.)
True
>>> np.allclose(x_grad, 0.)
True
LLCATS: PINF GRAD
calc_grad_of_active_link
(*args, **kwargs)¶Calculate gradients at active links.
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((3, 4))
>>> z = np.array([0., 0., 0., 0.,
... 1., 1., 1., 1.,
... 3., 3., 3., 3.])
>>> grid.calc_grad_of_active_link(z)
array([ 1., 1., 0., 0., 0., 2., 2.])
This method is deprecated. Instead, use calc_grad_at_link
.
>>> vals = grid.calc_grad_at_link(z)
>>> vals[grid.active_links]
array([ 1., 1., 0., 0., 0., 2., 2.])
LLCATS: DEPR
calc_hillshade_at_node
(alt=45.0, az=315.0, slp=None, asp=None, unit='degrees', elevs='topographic__elevation')[source]¶Get array of hillshade.
Code author: Katy Barnhart <katherine.barnhart@colorado.edu>
Parameters: | alt : float
az : float
slp : float
asp : float
unit : string
If slp and asp are both not specified, ‘elevs’ must be provided as a grid field name (defaults to ‘topographic__elevation’) or an nnodes-long array of elevation values. In this case, the method will calculate local slopes and aspects internally as part of the hillshade production. |
---|---|
Returns: | ndarray of float
|
Notes
code taken from GeospatialPython.com example from December 14th, 2014 DEJH found what looked like minor sign problems, and adjusted to follow the ArcGIS algorithm: http://help.arcgis.com/en/arcgisdesktop/10.0/ help/index.html#/How_Hillshade_works/009z000000z2000000/ .
Remember when plotting that bright areas have high values. cmap=’Greys’ will give an apparently inverted color scheme. cmap=’gray’ has white associated with the high values, so is recommended for plotting.
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((5, 5), 1.)
>>> z = mg.x_of_node * np.tan(60. * np.pi / 180.)
>>> mg.calc_hillshade_at_node(elevs=z, alt=30., az=210.)
array([ 0.625, 0.625, 0.625, 0.625, 0.625, 0.625, 0.625, 0.625,
0.625, 0.625, 0.625, 0.625, 0.625, 0.625, 0.625, 0.625,
0.625, 0.625, 0.625, 0.625, 0.625, 0.625, 0.625, 0.625,
0.625])
LLCATS: NINF SURF
calc_net_flux_at_node
(grid, vals, *args, **kwds)¶Calculate net link fluxes at nodes.
Given a flux per unit width along each link in the grid, calculate the net outflux (or influx, if negative) at each node. Fluxes are treated as zero for links that have no faces, and net fluxes are treated as zero for nodes that have no cell.
Construction:
grid.calc_net_flux_at_node(unit_flux_at_links, out=None)
Parameters: | unit_flux_at_links : ndarray or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray (x number of cells)
|
Notes
This is essentially a line integral for the fluxes along the boundaries of each cell. Hence, the resulting output has dimensions of total flux (so, if the unit flux happens to be mass per time per face width, the output will be in mass per unit time). Because a line integral is undefined where there are no cells (i.e., perimeter nodes), the result is given as zeros for these nodes. The current algorithm uses fancy indexing (calling _calc_net_face_flux_at_cells) and could probably be made faster.
LLCATS: NINF GRAD
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> rg = RasterModelGrid(3, 4, 10.0)
>>> z = rg.add_zeros('node', 'topographic__elevation')
>>> z[5] = 50.0
>>> z[6] = 36.0
>>> lg = rg.calc_grad_at_link(z) # there are 17 links
>>> lg
array([ 0. , 0. , 0. , 0. , 5. , 3.6, 0. , 5. , -1.4, -3.6, 0. ,
-5. , -3.6, 0. , 0. , 0. , 0. ])
>>> calc_net_flux_at_node(rg, -lg)
array([ 0., 0., 0., 0., 0., 164., 94., 0., 0.,
0., 0., 0.])
>>> rg.set_status_at_node_on_edges(right=CLOSED_BOUNDARY)
>>> rg.set_status_at_node_on_edges(top=CLOSED_BOUNDARY)
>>> unit_flux_at_links = np.zeros(rg.number_of_links)
>>> unit_flux_at_links[rg.active_links] = -lg[rg.active_links]
>>> nlfn = calc_net_flux_at_node(rg, unit_flux_at_links)
>>> np.round(nlfn)
array([ 0., 0., 0., 0., 0., 114., 22., 0., 0.,
0., 0., 0.])
>>> from landlab import HexModelGrid
>>> hg = HexModelGrid(3, 3, 10.0)
>>> z = hg.add_zeros('node', 'topographic__elevation', noclobber=False)
>>> z[4] = 50.0
>>> z[5] = 36.0
>>> lg = hg.calc_grad_at_link(z) # there are ? links
>>> lg
array([ 0. , 0. , 0. , 5. , 5. , 3.6, 3.6, 0. , 5. , -1.4, -3.6,
0. , -5. , -5. , -3.6, -3.6, 0. , 0. , 0. ])
>>> nlfn = calc_net_flux_at_node(hg, -lg)
>>> np.round(nlfn)
array([ 0., 0., 0., 0., 152., 96., 0., 0., 0., 0.])
calc_slope_at_node
(grid, elevs='topographic__elevation', method='patch_mean', ignore_closed_nodes=True, return_components=False, **kwds)¶Array of slopes at nodes, averaged over neighboring patches.
Produces a value for node slope (i.e., mean gradient magnitude) at each node in a manner analogous to a GIS-style slope map. It averages the gradient on each of the patches surrounding the node, creating a value for node slope that better incorporates nonlocal elevation information. Directional information can still be returned through use of the return_components keyword.
Note that under these definitions, it is not always true that:
mag, cmp = mg.calc_slope_at_node(z)
mag ** 2 == cmp[0] ** 2 + cmp[1] ** 2 # not always true
If ignore_closed_nodes is False, all proximal elevation values will be used in the calculation. If True, only unclosed nodes are used.
Parameters: | elevs : str or ndarray, optional
method : {‘patch_mean’, ‘Horn’}
ignore_closed_nodes : bool
return_components : bool
|
---|---|
Returns: | float array or length-2 tuple of float arrays
|
Examples
>>> import numpy as np
>>> from landlab import RadialModelGrid, RasterModelGrid
>>> mg = RasterModelGrid((4, 5), 1.)
>>> z = mg.node_x
>>> slopes = mg.calc_slope_at_node(elevs=z)
>>> np.allclose(slopes, 45. / 180. * np.pi)
True
>>> mg = RasterModelGrid((4, 5), 1.)
>>> z = - mg.node_y
>>> slope_mag, cmp = mg.calc_slope_at_node(elevs=z,
... return_components=True)
>>> np.allclose(slope_mag, np.pi / 4.)
True
>>> np.allclose(cmp[0], 0.)
True
>>> np.allclose(cmp[1], - np.pi / 4.)
True
>>> mg = RadialModelGrid(num_shells=9)
>>> z = mg.radius_at_node
>>> slopes = mg.calc_slope_at_node(elevs=z)
>>> mean_ring_slope = []
>>> for i in range(10):
... mean_ring_slope.append(
... slopes[np.isclose(mg.radius_at_node, i)].mean())
Notice the small amounts of numerical error here:
>>> target_mean_ring_slope = [0.85707194785013108, 0.79363155567711452,
... 0.77922185867135429, 0.78359813570962411,
... 0.78433070957439543, 0.78452745144699965,
... 0.78477643475446901, 0.78506472422668094,
... 0.78505793680521629, 0.78661256633611021]
>>> np.allclose(mean_ring_slope, target_mean_ring_slope)
True
LLCATS: NINF GRAD SURF
calc_slope_at_patch
(grid, elevs='topographic__elevation', ignore_closed_nodes=True, unit_normal=None)¶Calculate the slope (positive magnitude of gradient) at patches.
If ignore_closed_nodes is True, closed nodes do not affect slope calculations. If a closed node is present in a patch, the patch slope is set to zero.
Parameters: | elevs : str or ndarray, optional
ignore_closed_nodes : bool
unit_normal : array with shape (num_patches, 3) (optional)
|
---|---|
Returns: | slopes_at_patch : n_patches-long array
|
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5))
>>> z = mg.node_x
>>> S = mg.calc_slope_at_patch(elevs=z)
>>> S.size == mg.number_of_patches
True
>>> np.allclose(S, np.pi / 4.)
True
LLCATS: PINF GRAD
calc_unit_normal_at_patch
(grid, elevs='topographic__elevation')¶Calculate and return the unit normal vector <a, b, c> to a patch.
Parameters: | elevs : str or ndarray, optional
|
---|---|
Returns: | nhat : num-patches x length-3 array
|
Examples
>>> from landlab import HexModelGrid
>>> mg = HexModelGrid(3, 3)
>>> z = mg.node_x * 3. / 4.
>>> mg.calc_unit_normal_at_patch(z)
array([[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8]])
LLCATS: PINF GRAD
calculate_diff_at_active_links
(*args, **kwargs)¶Calculate differences of node values over active links.
Calculates the difference in quantity node_values at each active link in the grid.
Construction:
grid.calculate_diff_at_active_links(node_values, out=None)
Parameters: | node_values : ndarray or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
LLCATS: DEPR LINF GRAD |
calculate_diff_at_links
(*args, **kwargs)¶Calculate differences of node values over links.
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((3, 3))
>>> z = np.zeros(9)
>>> z[4] = 1.
>>> grid.calculate_diff_at_links(z)
array([ 0., 0., 0., 1., 0., 1., -1., 0., -1., 0., 0., 0.])
>>> grid.calc_diff_at_link(z)
array([ 0., 0., 0., 1., 0., 1., -1., 0., -1., 0., 0., 0.])
LLCATS: DEPR LINF GRAD
calculate_flux_divergence_at_core_nodes
(*args, **kwargs)[source]¶Get array of flux divergence for core nodes.
Given an array of fluxes along links, computes the net total flux within each cell, divides by cell area, and stores the result in net_unit_flux.
The function works by calling calculate_flux_divergence_at_nodes, then slicing out only the values at core nodes. Therefore, it is slower than calculate_flux_divergence_at_nodes, even though it returns a shorter list of numbers.
The input active_link_flux should be flux of something (e.g., mass, momentum, energy) per unit face width, positive if flowing in the same direction as its link, and negative otherwise. There should be one value per active link. Returns an array of net total flux per unit area, one value per core node (creates this array if it is not given as an argument).
By convention, divergence is positive for net outflow, and negative for net outflow. That’s why we add outgoing flux and subtract incoming flux. This makes net_unit_flux have the same sign and dimensions as a typical divergence term in a conservation equation.
In general, for a polygonal cell with N sides of lengths Li and with surface area A, the net influx divided by cell area would be:
For a square cell, which is what we have in RasterModelGrid, the sum is over 4 sides of length dx, and \(A = dx^2\), so:
Note
The net flux is defined as positive outward, negative inward. In a diffusion problem, for example, one would use:
where fd is “flux divergence”.
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((4, 5), 1.0)
>>> u = [0., 1., 2., 3., 0.,
... 1., 2., 3., 2., 3.,
... 0., 1., 2., 1., 2.,
... 0., 0., 2., 2., 0.]
>>> u = np.array(u)
>>> grad = rmg.calc_grad_at_link(u)[rmg.active_links]
>>> grad
array([ 1., 1., -1., 1., 1., -1., 1., -1., -1., -1., 1., 1., -1.,
1., -1., 0., 1.])
>>> flux = - grad # downhill flux proportional to gradient
>>> divflux = rmg.calculate_flux_divergence_at_core_nodes(flux)
>>> divflux
array([ 2., 4., -2., 0., 1., -4.])
If calculate_gradients_at_core_nodes is called inside a loop, you can improve speed slightly by creating an array outside the loop. For example, do this once, before the loop:
>>> divflux = np.zeros(rmg.number_of_core_cells) # outside loop
Then do this inside the loop:
>>> divflux = rmg.calculate_flux_divergence_at_core_nodes(
... flux, divflux)
In this case, the function will not have to create the divflux array.
Note this method is untested with looped boundary conditions.
LLCATS: DEPR NINF GRAD
calculate_flux_divergence_at_nodes
(*args, **kwargs)[source]¶Flux divergence at nodes.
Same as calculate_flux_divergence_at_active_cells, but works with and returns a list of net unit fluxes that corresponds to all nodes, rather than just active cells.
Note that we don’t compute net unit fluxes at boundary nodes (which don’t have active cells associated with them, and often don’t have cells of any kind, because they are on the perimeter), but simply return zeros for these entries. The advantage is that the caller can work with node-based arrays instead of active-cell-based arrays.
This method is untested with looped boundary conditions.
LLCATS: DEPR NINF GRAD
calculate_gradients_at_faces
(*args, **kwargs)¶Calculate gradients of node values over faces.
Calculate and return gradient in node_values at each face in the grid. Gradients are calculated from the nodes at either end of the link that crosses each face.
Construction:
grid.calculate_gradients_at_faces(node_values, out=None)
Parameters: | node_values : ndarray or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray (x number of faces)
|
Examples
>>> from landlab import RasterModelGrid
>>> rg = RasterModelGrid(3, 4, 10.0)
>>> z = rg.add_zeros('node', 'topographic__elevation')
>>> z[5] = 50.0
>>> z[6] = 36.0
>>> calculate_gradients_at_faces(rg, z) # there are 7 faces
array([ 5. , 3.6, 5. , -1.4, -3.6, -5. , -3.6])
>>> from landlab import HexModelGrid
>>> hg = HexModelGrid(3, 3, 10.0)
>>> z = hg.add_zeros('node', 'topographic__elevation', noclobber=False)
>>> z[4] = 50.0
>>> z[5] = 36.0
>>> calculate_gradients_at_faces(hg, z) # there are 11 faces
array([ 5. , 5. , 3.6, 3.6, 5. , -1.4, -3.6, -5. , -5. , -3.6, -3.6])
LLCATS: DEPR GRAD
cell_area_at_node
¶Cell areas in a nnodes-long array.
Zeros are entered at all perimeter nodes, which lack cells.
Returns: | ndarray
|
---|
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((4, 5), spacing=(3, 4))
>>> grid.status_at_node[7] = CLOSED_BOUNDARY
>>> grid.cell_area_at_node
array([ 0., 0., 0., 0., 0.,
0., 12., 12., 12., 0.,
0., 12., 12., 12., 0.,
0., 0., 0., 0., 0.])
LLCATS: CINF NINF CONN
cell_at_node
¶Node ID associated with grid cells.
Examples
>>> from landlab import RasterModelGrid, BAD_INDEX_VALUE
>>> grid = RasterModelGrid((4, 5))
>>> ids = grid.cell_at_node
>>> ids[ids == BAD_INDEX_VALUE] = -1
>>> ids
array([-1, -1, -1, -1, -1,
-1, 0, 1, 2, -1,
-1, 3, 4, 5, -1,
-1, -1, -1, -1, -1])
LLCATS: CINF NINF CONN
closed_boundary_nodes
¶Get array of closed boundary nodes.
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> mg = RasterModelGrid((4, 5), 1.)
>>> mg.status_at_node[mg.nodes_at_top_edge] = CLOSED_BOUNDARY
>>> mg.closed_boundary_nodes
array([15, 16, 17, 18, 19])
LLCATS: NINF BC
core_cells
¶Get array of core cells.
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> mg = RasterModelGrid((4, 5), 1.)
>>> mg.status_at_node[8] = CLOSED_BOUNDARY
>>> mg.core_cells
array([0, 1, 3, 4, 5])
LLCATS: CINF BC
core_nodes
¶Get array of core nodes.
Examples
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5), 1.)
>>> mg.core_nodes
array([ 6, 7, 8, 11, 12, 13])
LLCATS: NINF BC
display_grid
(*args, **kwargs)[source]¶Display the grid.
Note
This method is deprecated as of Landlab version 1.0.
Use plot.imshow_grid()
instead.
LLCATS: DEPR GINF
downwind_links_at_node
(values, bad_index=-1)[source]¶Return an (nnodes, X) shape array of link IDs of which links are downwind of each node, according to values (array or field).
X is the maximum downwind links at any node. Nodes with fewer downwind links than this have additional slots filled with bad_index. Links are ordered anticlockwise from east.
Parameters: | values : str or array
bad_index : int
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid, BAD_INDEX_VALUE
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... -2., -3., -4., -5.,
... -1., -2., -1.,
... -1., -2., -3., -4.,
... -1., -2., -1.])
>>> rmg.downwind_links_at_node('grad', bad_index=BAD_INDEX_VALUE)
array([[ 0, 3],
[ 1, 4],
[ 2, 5],
[ 6, -1],
[ 7, 10],
[ 8, 11],
[ 9, 12],
[13, -1],
[14, -1],
[15, -1],
[16, -1],
[-1, -1]])
LLCATS: LINF NINF CONN
face_at_link
¶Get array of faces associated with links.
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid, BAD_INDEX_VALUE
>>> mg = RasterModelGrid((4, 5), 1.)
>>> mg.face_at_link[5:7]
array([0, 1])
>>> np.all(mg.face_at_link[:5]==BAD_INDEX_VALUE)
True
LLCATS: FINF LINF CONN
face_width
¶LLCATS: DEPR FINF MEAS
faces_at_cell
¶Return array containing face IDs at each cell.
Creates array if it doesn’t already exist.
LLCATS: FINF CINF CONN
fixed_gradient_boundary_node_anchor_node
¶Returns the node at the other end of the fixed link for a fixed gradient boundary node.
Degenerate FIXED_GRADIENT_BOUNDARY nodes (e.g., corners) are handled as
in fixed_gradient_boundary_node_fixed_link()
, by pointing to a
neighboring FIXED_GRADIENT_BOUNDARY node.
Examples
>>> from landlab import RasterModelGrid
>>> from landlab import FIXED_GRADIENT_BOUNDARY
>>> grid = RasterModelGrid((3, 4))
>>> leftedge = grid.nodes_at_left_edge
>>> grid.status_at_node[leftedge] = FIXED_GRADIENT_BOUNDARY
>>> grid.fixed_gradient_boundary_nodes
array([0, 4, 8])
>>> grid.fixed_gradient_boundary_node_fixed_link
array([ 3, 7, 10])
>>> grid.fixed_gradient_boundary_node_anchor_node
array([4, 5, 4])
fixed_gradient_boundary_node_fixed_link
¶An array of the fixed_links connected to fixed gradient boundary nodes.
Note that on a raster, some nodes (notably the corners) can be FIXED_GRADIENT_BOUNDARY, but not have a true FIXED_LINK neighboring link. In such cases, the link returned will be a closed link joining the corner node to a neighboring FIXED_GRADIENT_BOUNDARY node (see example).
An AssertionError will be raised if for some reason a FIXED_GRADIENT_BOUNDARY node exists which has neither a FIXED_GRADIENT_BOUNDARY neighbor, or a FIXED_LINK.
Examples
>>> from landlab import RasterModelGrid
>>> from landlab import FIXED_GRADIENT_BOUNDARY
>>> grid = RasterModelGrid((3, 4))
>>> leftedge = grid.nodes_at_left_edge
>>> grid.status_at_node[leftedge] = FIXED_GRADIENT_BOUNDARY
>>> grid.fixed_gradient_boundary_nodes
array([0, 4, 8])
>>> grid.fixed_gradient_boundary_node_fixed_link
array([ 3, 7, 10])
fixed_gradient_boundary_nodes
¶Get array of fixed gradient boundary nodes.
Examples
>>> from landlab import RasterModelGrid, FIXED_GRADIENT_BOUNDARY
>>> mg = RasterModelGrid((4, 5), 1.)
>>> mg.status_at_node[mg.nodes_at_top_edge] = FIXED_GRADIENT_BOUNDARY
>>> mg.fixed_gradient_boundary_nodes
array([15, 16, 17, 18, 19])
LLCATS: NINF BC
fixed_links
¶Get array of fixed links.
Examples
>>> from landlab import RasterModelGrid, FIXED_GRADIENT_BOUNDARY
>>> grid = RasterModelGrid((3, 4))
>>> grid.status_at_node
array([1, 1, 1, 1,
1, 0, 0, 1,
1, 1, 1, 1], dtype=int8)
>>> grid.fixed_links.size
0
>>> grid.status_at_node[:4] = FIXED_GRADIENT_BOUNDARY
>>> grid.status_at_node
array([2, 2, 2, 2,
1, 0, 0, 1,
1, 1, 1, 1], dtype=int8)
>>> grid.fixed_links
array([4, 5])
LLCATS: LINF BC
fixed_value_boundary_nodes
¶Get array of fixed value boundary nodes.
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> mg = RasterModelGrid((4, 5), 1.)
>>> for edge in (mg.nodes_at_left_edge, mg.nodes_at_right_edge,
... mg.nodes_at_bottom_edge):
... mg.status_at_node[edge] = CLOSED_BOUNDARY
>>> mg.fixed_value_boundary_nodes
array([16, 17, 18])
LLCATS: NINF BC
length_of_link
¶Get lengths of links.
Returns: | ndarray
|
---|
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((4, 5))
>>> grid.length_of_link
array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1.])
>>> len(grid.length_of_link) == grid.number_of_links
True
LLCATS: LINF MEAS
link_at_face
¶Get links associated with faces.
Returns an array of the link IDs for the links that intersect faces.
Examples
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((3, 4))
>>> mg.link_at_face
array([ 4, 5, 7, 8, 9, 11, 12])
LLCATS: LINF FINF MEAS
link_at_node_is_downwind
(values, out=None)[source]¶Return a boolean the same shape as
links_at_node()
which flags links which are downwind of the node as True.link_at_node_is_downwind iterates across the grid and identifies the link values at each link connected to a node. It then uses the link_dirs_at_node data structure to identify links carrying flux out of the node. It then return a boolean array the same shape as links_at_node flagging these links. e.g., for a raster, the returned array will be shape (nnodes, 4).
Parameters: | values : str or array
|
---|---|
Returns: | ndarray
|
LLCATS: LINF NINF CONN
link_at_node_is_upwind
(values, out=None)[source]¶Return a boolean the same shape as
links_at_node()
which flags links which are upwind of the node as True.link_at_node_is_upwind iterates across the grid and identifies the link values at each link connected to a node. It then uses the link_dirs_at_node data structure to identify links bringing flux into the node. It then return a boolean array the same shape as links_at_node flagging these links. e.g., for a raster, the returned array will be shape (nnodes, 4).
Parameters: | values : str or array
|
---|---|
Returns: | ndarray
|
LLCATS: LINF NINF CONN
link_dirs_at_node
¶Link directions at each node: 1=incoming, -1=outgoing, 0=none.
Returns: | (NODES, LINKS) ndarray of int
|
---|
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((4, 3))
>>> grid.link_dirs_at_node
array([[-1, -1, 0, 0], [-1, -1, 1, 0], [ 0, -1, 1, 0],
[-1, -1, 0, 1], [-1, -1, 1, 1], [ 0, -1, 1, 1],
[-1, -1, 0, 1], [-1, -1, 1, 1], [ 0, -1, 1, 1],
[-1, 0, 0, 1], [-1, 0, 1, 1], [ 0, 0, 1, 1]],
dtype=int8)
>>> grid.link_dirs_at_node[4]
array([-1, -1, 1, 1], dtype=int8)
>>> grid.link_dirs_at_node[(4, 7), :]
array([[-1, -1, 1, 1],
[-1, -1, 1, 1]], dtype=int8)
LLCATS: NINF LINF CONN
link_length
¶LLCATS: DEPR LINF MEAS
link_unit_vec_x
¶Note
This method is deprecated as of Landlab version 0.5.
Use unit_vector_xcomponent_at_link()
instead.
LLCATS: DEPR LINF MEAS
link_unit_vec_y
¶Note
This method is deprecated as of Landlab version 0.5.
Use unit_vector_xcomponent_at_link()
instead.
LLCATS: DEPR LINF MEAS
links_at_node
¶Get links of nodes.
Returns: | (NODES, LINKS) ndarray of int
|
---|
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((4, 3))
>>> grid.links_at_node
array([[ 0, 2, -1, -1], [ 1, 3, 0, -1], [-1, 4, 1, -1],
[ 5, 7, -1, 2], [ 6, 8, 5, 3], [-1, 9, 6, 4],
[10, 12, -1, 7], [11, 13, 10, 8], [-1, 14, 11, 9],
[15, -1, -1, 12], [16, -1, 15, 13], [-1, -1, 16, 14]])
>>> grid.links_at_node[4]
array([6, 8, 5, 3])
>>> grid.links_at_node[(4, 7), :]
array([[ 6, 8, 5, 3], [11, 13, 10, 8]])
LLCATS: NINF LINF CONN
map_downwind_node_link_max_to_node
(grid, var_name, out=None)¶Map the largest magnitude of the links carrying flux from the node to the node.
map_downwind_node_link_max_to_node iterates across the grid and identifies the link values at each link connected to a node. It then uses the link_dirs_at_node data structure to identify links carrying flux out of the node, then maps the maximum magnitude of ‘var_name’ found on these links onto the node. If no downwind link is found, the value will be recorded as zero.
Construction:
grid.map_downwind_node_link_max_to_node(var_name, out=None)
Parameters: | var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_downwind_node_link_max_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.])
>>> map_downwind_node_link_max_to_node(rmg, 'grad')
array([ 1., 2., 1., 0.,
1., 2., 1., 0.,
1., 2., 1., 0.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_downwind_node_link_max_to_node(rmg, 'grad',
... out=values_at_nodes)
>>> values_at_nodes
array([ 1., 2., 1., 0.,
1., 2., 1., 0.,
1., 2., 1., 0.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
map_downwind_node_link_mean_to_node
(grid, var_name, out=None)¶Map the mean magnitude of the links carrying flux out of the node to the node.
map_downwind_node_link_mean_to_node iterates across the grid and identifies the link values at each link connected to a node. It then uses the link_dirs_at_node data structure to identify links carrying flux out of the node, then maps the mean magnitude of ‘var_name’ found on these links onto the node. Links with zero values are not included in the means, and zeros are returned if no upwind links are found.
Construction:
grid.map_downwind_node_link_mean_to_node(var_name, out=None)
Parameters: | var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_downwind_node_link_mean_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... -2., -3., -4., -5.,
... -1., -2., -1.,
... -1., -2., -3., -4.,
... -1., -2., -1.])
>>> map_downwind_node_link_mean_to_node(rmg, 'grad')
array([ 1.5, 2.5, 2.5, 5. ,
1. , 2. , 2. , 4. ,
1. , 2. , 1. , 0. ])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_downwind_node_link_mean_to_node(rmg, 'grad',
... out=values_at_nodes)
>>> values_at_nodes
array([ 1.5, 2.5, 2.5, 5. ,
1. , 2. , 2. , 4. ,
1. , 2. , 1. , 0. ])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
map_link_head_node_to_link
(grid, var_name, out=None)¶Map values from a link head nodes to links.
Iterate over a grid and identify the node at the head. For each link, the value of var_name at the head node is mapped to the corresponding link.
In a RasterModelGrid, each one node has two adjacent “link heads”. This means each node value is mapped to two corresponding links.
Construction:
grid.map_link_head_node_to_link(var_name, out=None)
Parameters: | var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_link_head_node_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['z'] = np.array([ 0, 1, 2, 3,
... 4, 5, 6, 7,
... 8, 9, 10, 11])
>>> map_link_head_node_to_link(rmg, 'z')
array([ 1., 2., 3., 4., 5., 6., 7., 5., 6., 7., 8.,
9., 10., 11., 9., 10., 11.])
>>> values_at_links = rmg.empty(at='link')
>>> rtn = map_link_head_node_to_link(rmg, 'z', out=values_at_links)
>>> values_at_links
array([ 1., 2., 3., 4., 5., 6., 7., 5., 6., 7., 8.,
9., 10., 11., 9., 10., 11.])
>>> rtn is values_at_links
True
LLCATS: NINF LINF MAP
map_link_tail_node_to_link
(grid, var_name, out=None)¶Map values from a link tail nodes to links.
map_link_tail_node_to_link iterates across the grid and identifies the node at the “tail”, or the “from” node for each link. For each link, the value of ‘var_name’ at the “from” node is mapped to the corresponding link.
In a RasterModelGrid, each one node has two adjacent “link tails”. This means each node value is mapped to two corresponding links.
Construction:
grid.map_link_tail_node_to_link(var_name, out=None)
Parameters: | var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_link_tail_node_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['z'] = np.array([ 0, 1, 2, 3,
... 4, 5, 6, 7,
... 8, 9, 10, 11])
>>> map_link_tail_node_to_link(rmg, 'z')
array([ 0., 1., 2., 0., 1., 2., 3., 4., 5., 6., 4.,
5., 6., 7., 8., 9., 10.])
>>> values_at_links = rmg.empty(at='link')
>>> rtn = map_link_tail_node_to_link(rmg, 'z', out=values_at_links)
>>> values_at_links
array([ 0., 1., 2., 0., 1., 2., 3., 4., 5., 6., 4.,
5., 6., 7., 8., 9., 10.])
>>> rtn is values_at_links
True
LLCATS: NINF LINF MAP
map_link_vector_sum_to_patch
(grid, var_name, ignore_inactive_links=True, out=None)¶Map the vector sum of links around a patch to the patch.
The resulting vector is returned as a length-2 list, with the two items being arrays of the x component and the y component of the resolved vectors at the patches, respectively.
Construction:
grid.map_link_vector_sum_to_patch(var_name, ignore_inctive_links=True,
out=None)
Parameters: | var_name : array or field name
ignore_inactive_links : bool
out : len-2 list of npatches-long arrays, optional
|
---|---|
Returns: | len-2 list of arrays
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_link_vector_sum_to_patch
>>> from landlab import HexModelGrid
>>> from landlab import CLOSED_BOUNDARY, CORE_NODE, INACTIVE_LINK
>>> mg = HexModelGrid(4, 3)
>>> interior_nodes = mg.status_at_node == CORE_NODE
>>> exterior_nodes = mg.status_at_node != CORE_NODE
Add a ring of closed nodes at the edge:
>>> mg.status_at_node[exterior_nodes] = CLOSED_BOUNDARY
This gives us 5 core nodes, 7 active links, and 3 present patches
>>> (mg.number_of_core_nodes == 5 and mg.number_of_active_links == 7)
True
>>> A = mg.add_ones('link', 'vals')
>>> A.fill(9.) # any old values on the inactive links
>>> A[mg.active_links] = np.array([ 1., -1., 1., -1., -1., -1., -1.])
This setup should give present patch 0 pure east, patch 1 zero (vorticity), and patch 2 westwards and downwards components.
>>> xcomp, ycomp = map_link_vector_sum_to_patch(mg, 'vals')
>>> np.allclose(xcomp[[6, 9, 10]], [2., 0., -1])
True
>>> np.allclose(ycomp[[6, 9, 10]]/np.sqrt(3.), [0., 0., -1.])
True
These are the patches with INACTIVE_LINKs on all three sides:
>>> absent_patches = np.array([0, 1, 2, 4, 8, 11, 12, 15, 16, 17, 18])
>>> np.allclose(xcomp[absent_patches], 0.)
True
>>> np.allclose(ycomp[absent_patches], 0.)
True
Now demonstrate the remaining functionality:
>>> A = mg.at_link['vals'].copy()
>>> A.fill(1.)
>>> _ = map_link_vector_sum_to_patch(mg, A, ignore_inactive_links=False,
... out=[xcomp, ycomp])
>>> np.allclose(xcomp[absent_patches], 0.)
False
>>> np.allclose(ycomp[absent_patches], 0.)
False
LLCATS: PINF LINF MAP
map_link_vector_to_nodes
(q)[source]¶Map data defined on links to nodes.
Given a variable defined on links, breaks it into x and y components and assigns values to nodes by averaging each node’s attached links.
Parameters: | q : ndarray of floats (1D, length = number of links in grid)
|
---|---|
Returns: | ndarray, ndarray
|
See also
_create_link_unit_vectors
Notes
THIS ALGORITHM IS NOT CORRECT AND NEEDS TO BE CHANGED!
The concept here is that q contains a vector variable that is defined at each link. The magnitude is given by the value of q, and the direction is given by the orientation of the link, as described by its unit vector.
To map the link-vector values to the nodes, we break the values into x- and y-components according to each link’s unit vector. The x-component of q at a node is a weighted sum of the x-components of the links that are attached to that node. A good way to appreciate this is by example. Consider a 3x4 raster grid:
8--14---9--15--10--16--11
| | | |
4 5 6 7
| | | |
4--11---5---12--6---13--7
| | | |
0 1 2 3
| | | |
0---8---1---9---2--10---3
Imagine that for each node, we were to add up the unit vector components for each connected link; in other words, add up all the x components of the unit vectors associated with each link, and add up all the y components. Here’s what that would look like for the above grid (“vsx” and “vsy” stand for “vector sum x” and “vector sum y”):
The process of creating unit-vector sums at nodes is handled by ModelGrid._create_link_unit_vectors() (and, for raster grids, by the overriding method RasterModelGrid._create_link_unit_vectors()). The node unit-vector sums are then stored in self.node_unit_vector_sum_x and self.node_unit_vector_sum_y.
How would you use this? Suppose you have a vector variable q defined at links. What’s the average at the nodes? We’ll define the average as follows. The terminology here is: \(q = (u,v)\) represents the vector quantity defined at links, \(Q = (U,V)\) represents its definition at nodes, \((m,n)\) represents the unit vector components at a link, and \((S_x,S_y)\) represents the unit-vector sum at a given node.
Suppose that the vector q is uniform and equal to one. Then, at node 0 in the above grid, this works out to:
U_0 = (q_0 m_0) / 1 + (q_8 m_8) / 1 = (1 0)/ 1 + (1 1)/1 = 1
V_0 = (q_0 n_0) / 1 + (q_8 n_8) / 1 = (1 1) / 1 + (1 0) / 1 = 1
At node 1, in the bottom row but not a corner, we add up the values of q associated with THREE links. The x-vector sum of these links is 2 because there are two horizontal links, each with an x- unit vector value of unity. The y-vector sum is 1 because only one of the three (link #1) has a non-zero y component (equal to one). Here is how the numbers work out:
U_1 = (q_1 m_1) / 2 + (q_8 m_8) / 2 + (q_9 m_9) / 2
= (1 0) / 2 + (1 1) / 2 + (1 1) / 2 = 1
V_1 = (q_1 n_1) / 1 + (q_8 n_8) / 1 + (q_9 n_9) / 1
= (1 1) / 1 + (1 0) / 1 + (1 0) / 1 = 1
At node 5, in the interior, there are four connected links (two in-links and two out-links; two horizontal and two vertical). So, we add up the q values associated with all four:
U_5 = (q_1 m_1) / 2 + (q_5 m_5) / 2 + (q_11 m_11) / 2 + (q_12 m_12) / 2
= (1 0) / 2 + (1 0) / 2 + (1 1) / 2 + (1 1) / 2 = 1
V_5 = (q_1 n_1) / 2 + (q_5 n_5) / 2 + (q_11 n_11) / 2 + (q_12 n_12) / 2
= (1 1) / 2 + (1 1) / 2 + (1 0) / 2 + (1 0) / 2 = 1
To do this calculation efficiently, we use the following algorithm:
FOR each row in _node_inlink_matrix (representing one inlink @ each
node)
Multiply the link's q value by its unit x component ...
... divide by node's unit vector sum in x ...
... and add it to the node's total q_x
Multiply the link's q value by its unit y component ...
... divide by node's unit vector sum in y ...
... and add it to the node's total q_y
Examples
Example 1
q[:] = 1. Vector magnitude is \(\sqrt{2}\), direction is \((1,1)\).
>>> import numpy as np
>>> import landlab as ll
>>> rmg = ll.RasterModelGrid((3, 4), spacing=(2., 2.))
>>> rmg.node_unit_vector_sum_x
array([ 1., 2., 2., 1., 1., 2., 2., 1., 1., 2., 2., 1.])
>>> rmg.node_unit_vector_sum_y
array([ 1., 1., 1., 1., 2., 2., 2., 2., 1., 1., 1., 1.])
>>> q = np.ones(rmg.number_of_links)
>>> nvx, nvy = rmg.map_link_vector_to_nodes(q)
>>> nvx
array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
>>> nvy
array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
Example 2
Vector magnitude is 5, angle is 30 degrees from horizontal, forming a 3-4-5 triangle.
>>> q = np.array([4., 4., 4., 3., 3., 3., 3.,
... 4., 4., 4., 3., 3., 3., 3.,
... 4., 4., 4])
>>> nvx, nvy = rmg.map_link_vector_to_nodes(q)
>>> nvx
array([ 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4., 4.])
>>> nvy
array([ 3., 3., 3., 3., 3., 3., 3., 3., 3., 3., 3., 3.])
..todo:
Fix and finish example 3 below.
Example 3: Hexagonal grid with vector as above. Here, q is pre-calculated to have the right values to represent a uniform vector with magnitude 5 and orientation 30 degrees counter-clockwise from horizontal.
LLCATS: NINF LINF CONN MAP
map_max_of_link_nodes_to_link
(grid, var_name, out=None)¶Map the maximum of a link’s nodes to the link.
map_max_of_link_nodes_to_link iterates across the grid and identifies the node values at both the “head” and “tail” of a given link. This function evaluates the value of ‘var_name’ at both the “to” and “from” node. The maximum value of the two node values is then mapped to the link.
Construction:
grid.map_max_of_link_nodes_to_link(var_name, out=None)
Parameters: | var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_max_of_link_nodes_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('node', 'z',
... [[0, 1, 2, 3],
... [7, 6, 5, 4],
... [8, 9, 10, 11]])
>>> map_max_of_link_nodes_to_link(rmg, 'z')
array([ 1., 2., 3., 7., 6., 5., 4., 7., 6., 5., 8.,
9., 10., 11., 9., 10., 11.])
>>> values_at_links = rmg.empty(at='link')
>>> rtn = map_max_of_link_nodes_to_link(rmg, 'z', out=values_at_links)
>>> values_at_links
array([ 1., 2., 3., 7., 6., 5., 4., 7., 6., 5., 8.,
9., 10., 11., 9., 10., 11.])
>>> rtn is values_at_links
True
LLCATS: NINF LINF MAP
map_max_of_node_links_to_node
(grid, var_name, out=None)¶Map the maximum value of a nodes’ links to the node.
map_max_of_node_links_to_node iterates across the grid and identifies the link values at each link connected to a node. This function finds the maximum value of ‘var_name’ of each set of links, and then maps this value to the node. Note no attempt is made to honor the directionality of the links.
Construction:
grid.map_max_of_node_links_to_node(var_name, out=None)
Parameters: | var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_max_of_node_links_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.arange(rmg.number_of_links)
>>> map_max_of_node_links_to_node(rmg, 'grad')
array([ 3., 4., 5., 6.,
10., 11., 12., 13.,
14., 15., 16., 16.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_max_of_node_links_to_node(rmg, 'grad', out=values_at_nodes)
>>> values_at_nodes
array([ 3., 4., 5., 6.,
10., 11., 12., 13.,
14., 15., 16., 16.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
map_max_of_patch_nodes_to_patch
(grid, var_name, ignore_closed_nodes=True, out=None)¶Map the maximum value of nodes around a patch to the patch.
Construction:
grid.map_max_of_patch_nodes_to_patch(var_name,
ignore_closed_nodes=True, out=None)
Parameters: | var_name : array or field name
ignore_closed_nodes : bool
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_max_of_patch_nodes_to_patch
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 3., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> map_max_of_patch_nodes_to_patch(rmg, 'vals')
array([ 5., 4., 3.,
4., 4., 3.])
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 3., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> rmg.status_at_node[rmg.node_x > 1.5] = CLOSED_BOUNDARY
>>> ans = np.zeros(6, dtype=float)
>>> _ = map_max_of_patch_nodes_to_patch(rmg, 'vals', out=ans)
>>> ans
array([ 5., 4., 0.,
4., 4., 0.])
LLCATS: PINF NINF MAP
map_mean_of_link_nodes_to_link
(grid, var_name, out=None)¶Map the mean of a link’s nodes to the link.
map_mean_of_link_nodes_to_link iterates across the grid and identifies the node values at both the “head” and “tail” of a given link. This function takes the sum of the two values of ‘var_name’ at both the “to” and “from” node. The average value of the two node values of ‘var_name’ is then mapped to the link.
Construction:
grid.map_mean_of_link_nodes_to_link(var_name, out=None)
Parameters: | var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_mean_of_link_nodes_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['z'] = np.array([ 0, 1, 2, 3,
... 4, 5, 6, 7,
... 8, 9, 10, 11])
>>> map_mean_of_link_nodes_to_link(rmg, 'z')
array([ 0.5, 1.5, 2.5, 2. , 3. , 4. , 5. , 4.5, 5.5,
6.5, 6. , 7. , 8. , 9. , 8.5, 9.5, 10.5])
>>> values_at_links = rmg.empty(at='link')
>>> rtn = map_mean_of_link_nodes_to_link(rmg, 'z', out=values_at_links)
>>> values_at_links
array([ 0.5, 1.5, 2.5, 2. , 3. , 4. , 5. , 4.5, 5.5,
6.5, 6. , 7. , 8. , 9. , 8.5, 9.5, 10.5])
>>> rtn is values_at_links
True
LLCATS: NINF LINF MAP
map_mean_of_patch_nodes_to_patch
(grid, var_name, ignore_closed_nodes=True, out=None)¶Map the mean value of nodes around a patch to the patch.
Construction:
grid.map_mean_of_patch_nodes_to_patch(var_name,
ignore_closed_nodes=True, out=None)
Parameters: | var_name : array or field name
ignore_closed_nodes : bool
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_mean_of_patch_nodes_to_patch
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 5., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> map_mean_of_patch_nodes_to_patch(rmg, 'vals')
array([ 4.5, 3.5, 2.5,
3.5, 2.5, 1.5])
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 5., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> rmg.status_at_node[rmg.node_x > 1.5] = CLOSED_BOUNDARY
>>> ans = np.zeros(6, dtype=float)
>>> _ = map_mean_of_patch_nodes_to_patch(rmg, 'vals', out=ans)
>>> ans
array([ 4.5, 4. , 0. ,
3.5, 3. , 0. ])
LLCATS: PINF NINF MAP
map_min_of_link_nodes_to_link
(grid, var_name, out=None)¶Map the minimum of a link’s nodes to the link.
map_min_of_link_nodes_to_link iterates across the grid and identifies the node values at both the “head” and “tail” of a given link. This function evaluates the value of ‘var_name’ at both the “to” and “from” node. The minimum value of the two node values is then mapped to the link.
Construction:
grid.map_min_of_link_nodes_to_link(var_name, out=None)
Parameters: | var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_min_of_link_nodes_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('node', 'z',
... [[ 0, 1, 2, 3],
... [ 7, 6, 5, 4],
... [ 8, 9, 10, 11]])
>>> map_min_of_link_nodes_to_link(rmg, 'z')
array([ 0., 1., 2., 0., 1., 2., 3., 6., 5., 4., 7.,
6., 5., 4., 8., 9., 10.])
>>> values_at_links = rmg.empty(at='link')
>>> rtn = map_min_of_link_nodes_to_link(rmg, 'z', out=values_at_links)
>>> values_at_links
array([ 0., 1., 2., 0., 1., 2., 3., 6., 5., 4., 7.,
6., 5., 4., 8., 9., 10.])
>>> rtn is values_at_links
True
LLCATS: NINF LINF MAP
map_min_of_node_links_to_node
(grid, var_name, out=None)¶Map the minimum value of a nodes’ links to the node.
map_min_of_node_links_to_node iterates across the grid and identifies the link values at each link connected to a node. This function finds the minimum value of ‘var_name’ of each set of links, and then maps this value to the node. Note no attempt is made to honor the directionality of the links.
Construction:
grid.map_min_of_node_links_to_node(var_name, out=None)
Parameters: | var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_min_of_node_links_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.arange(rmg.number_of_links)
>>> map_min_of_node_links_to_node(rmg, 'grad')
array([ 0., 0., 1., 2.,
3., 4., 5., 6.,
10., 11., 12., 13.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_min_of_node_links_to_node(rmg, 'grad', out=values_at_nodes)
>>> values_at_nodes
array([ 0., 0., 1., 2.,
3., 4., 5., 6.,
10., 11., 12., 13.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
map_min_of_patch_nodes_to_patch
(grid, var_name, ignore_closed_nodes=True, out=None)¶Map the minimum value of nodes around a patch to the patch.
Construction:
grid.map_min_of_patch_nodes_to_patch(var_name,
ignore_closed_nodes=True, out=None)
Parameters: | var_name : array or field name
ignore_closed_nodes : bool
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_min_of_patch_nodes_to_patch
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 5., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> map_min_of_patch_nodes_to_patch(rmg, 'vals')
array([ 4., 3., 2.,
2., 1., 0.])
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 5., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> rmg.status_at_node[rmg.node_x > 1.5] = CLOSED_BOUNDARY
>>> ans = np.zeros(6, dtype=float)
>>> _ = map_min_of_patch_nodes_to_patch(rmg, 'vals', out=ans)
>>> ans
array([ 4., 4., 0.,
2., 2., 0.])
LLCATS: PINF NINF MAP
map_node_to_cell
(grid, var_name, out=None)¶Map values for nodes to cells.
map_node_to_cell iterates across the grid and identifies the all node values of ‘var_name’.
This function takes node values of ‘var_name’ and mapes that value to the corresponding cell area for each node.
Construction:
grid.map_node_to_cell(var_name, out=None)
Parameters: | var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_node_to_cell
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('node', 'z', np.arange(12.))
>>> map_node_to_cell(rmg, 'z')
array([ 5., 6.])
>>> values_at_cells = rmg.empty(at='cell')
>>> rtn = map_node_to_cell(rmg, 'z', out=values_at_cells)
>>> values_at_cells
array([ 5., 6.])
>>> rtn is values_at_cells
True
LLCATS: CINF NINF MAP
map_upwind_node_link_max_to_node
(grid, var_name, out=None)¶Map the largest magnitude of the links bringing flux into the node to the node.
map_upwind_node_link_max_to_node iterates across the grid and identifies the link values at each link connected to a node. It then uses the link_dirs_at_node data structure to identify links bringing flux into the node, then maps the maximum magnitude of ‘var_name’ found on these links onto the node. If no upwind link is found, the value will be recorded as zero.
Construction:
grid.map_upwind_node_link_max_to_node(var_name, out=None)
Parameters: | var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_upwind_node_link_max_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.])
>>> map_upwind_node_link_max_to_node(rmg, 'grad')
array([ 0., 1., 2., 1.,
0., 1., 2., 1.,
0., 1., 2., 1.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_upwind_node_link_max_to_node(rmg, 'grad',
... out=values_at_nodes)
>>> values_at_nodes
array([ 0., 1., 2., 1.,
0., 1., 2., 1.,
0., 1., 2., 1.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
map_upwind_node_link_mean_to_node
(grid, var_name, out=None)¶Map the mean magnitude of the links bringing flux into the node to the node.
map_upwind_node_link_mean_to_node iterates across the grid and identifies the link values at each link connected to a node. It then uses the link_dirs_at_node data structure to identify links bringing flux into the node, then maps the mean magnitude of ‘var_name’ found on these links onto the node. Links with zero values are not included in the means, and zeros are returned if no upwind links are found.
Construction:
grid.map_upwind_node_link_mean_to_node(var_name, out=None)
Parameters: | var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_upwind_node_link_mean_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... -2., -3., -4., -5.,
... -1., -2., -1.,
... -1., -2., -3., -4.,
... -1., -2., -1.])
>>> map_upwind_node_link_mean_to_node(rmg, 'grad')
array([ 0. , 1. , 2. , 1. ,
2. , 2. , 3. , 3. ,
1. , 1.5, 2.5, 2.5])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_upwind_node_link_mean_to_node(rmg, 'grad',
... out=values_at_nodes)
>>> values_at_nodes
array([ 0. , 1. , 2. , 1. ,
2. , 2. , 3. , 3. ,
1. , 1.5, 2.5, 2.5])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
map_value_at_downwind_node_link_max_to_node
(grid, control_name, value_name, out=None)¶Map the the value found in one link array to a node, based on the largest magnitude value of links carrying fluxes out of the node, found in a second node array or field.
map_downwind_node_link_max_to_node iterates across the grid and identifies the link control_values at each link connected to a node. It then uses the link_dirs_at_node data structure to identify links carrying flux out of the node, then identifies the link with the maximum magnitude. The value of the second field ‘value_name’ at these links is then mapped onto the node. If no downwind link is found, the value will be recorded as zero.
Construction:
grid.map_value_at_downwind_node_link_max_to_node(control_name,
value_name, out=None)
Parameters: | control_name : array or field name
value_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_value_at_downwind_node_link_max_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.])
>>> rmg.at_link['vals'] = np.arange(rmg.number_of_links, dtype=float)
>>> map_value_at_downwind_node_link_max_to_node(rmg, 'grad', 'vals')
array([ 0., 1., 2., 0.,
7., 8., 9., 0.,
14., 15., 16., 0.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_value_at_downwind_node_link_max_to_node(rmg, 'grad', 'vals',
... out=values_at_nodes)
>>> values_at_nodes
array([ 0., 1., 2., 0.,
7., 8., 9., 0.,
14., 15., 16., 0.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
map_value_at_max_node_to_link
(grid, control_name, value_name, out=None)¶Map the the value found in one node array to a link, based on the maximum value found in a second node field or array.
map_value_at_max_node_to_link iterates across the grid and identifies the node values at both the “head” and “tail” of a given link. This function evaluates the value of ‘control_name’ at both the “to” and “from” node. The value of ‘value_name’ at the node with the maximum value of the two values of ‘control_name’ is then mapped to the link.
Construction:
grid.map_value_at_max_node_to_link(control_name, value_name,
out=None)
Parameters: | control_name : array or field name
value_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_value_at_max_node_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('node', 'z',
... [[0, 1, 2, 3],
... [7, 6, 5, 4],
... [8, 9, 10, 11]])
>>> _ = rmg.add_field('node', 'vals_to_map',
... [[0, 10, 20, 30],
... [70, 60, 50, 40],
... [80, 90, 100, 110]])
>>> map_value_at_max_node_to_link(rmg, 'z', 'vals_to_map')
array([ 10., 20., 30., 70., 60., 50., 40., 70., 60.,
50., 80., 90., 100., 110., 90., 100., 110.])
LLCATS: NINF LINF MAP
map_value_at_min_node_to_link
(grid, control_name, value_name, out=None)¶Map the the value found in one node array to a link, based on the minimum value found in a second node field or array.
map_value_at_min_node_to_link iterates across the grid and identifies the node values at both the “head” and “tail” of a given link. This function evaluates the value of ‘control_name’ at both the “to” and “from” node. The value of ‘value_name’ at the node with the minimum value of the two values of ‘control_name’ is then mapped to the link.
Construction:
grid.map_value_at_min_node_to_link(control_name, value_name,
out=None)
Parameters: | control_name : array or field name
value_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_value_at_min_node_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('node', 'z',
... [[0, 1, 2, 3],
... [7, 6, 5, 4],
... [8, 9, 10, 11]])
>>> _ = rmg.add_field('node', 'vals_to_map',
... [[0, 10, 20, 30],
... [70, 60, 50, 40],
... [80, 90, 100, 110]])
>>> map_value_at_min_node_to_link(rmg, 'z', 'vals_to_map')
array([ 0., 10., 20., 0., 10., 20., 30., 60., 50.,
40., 70., 60., 50., 40., 80., 90., 100.])
LLCATS: NINF LINF MAP
map_value_at_upwind_node_link_max_to_node
(grid, control_name, value_name, out=None)¶Map the the value found in one link array to a node, based on the largest magnitude value of links bringing fluxes into the node, found in a second node array or field.
map_upwind_node_link_max_to_node iterates across the grid and identifies the link control_values at each link connected to a node. It then uses the link_dirs_at_node data structure to identify links bringing flux into the node, then identifies the link with the maximum magnitude. The value of the second field ‘value_name’ at these links is then mapped onto the node. If no upwind link is found, the value will be recorded as zero.
Construction:
grid.map_value_at_upwind_node_link_max_to_node(control_name,
value_name, out=None)
Parameters: | control_name : array or field name
value_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_value_at_upwind_node_link_max_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.])
>>> rmg.at_link['vals'] = np.arange(rmg.number_of_links, dtype=float)
>>> map_value_at_upwind_node_link_max_to_node(rmg, 'grad', 'vals')
array([ 0., 0., 1., 2.,
0., 7., 8., 9.,
0., 14., 15., 16.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_value_at_upwind_node_link_max_to_node(rmg, 'grad', 'vals',
... out=values_at_nodes)
>>> values_at_nodes
array([ 0., 0., 1., 2.,
0., 7., 8., 9.,
0., 14., 15., 16.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
max_of_link_end_node_values
(*args, **kwargs)[source]¶Maximum value at the end of links.
Note
This method is deprecated as of Landlab version 1.0.
Use map_max_of_link_nodes_to_link()
instead.
For each active link, finds and returns the maximum value of node_data at either of the two ends. Use this, for example, if you want to find the maximum value of water depth at linked pairs of nodes (by passing in an array of water depth values at nodes).
Parameters: | node_data : ndarray
|
---|---|
Returns: | ndarray :
|
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((3, 4), spacing=(1., 1.))
>>> h = np.array([ 2., 2., 8., 0.,
... 8., 0., 3., 0.,
... 5., 6., 8., 3.])
>>> grid.max_of_link_end_node_values(h)
array([ 2., 8., 8., 3., 3., 6., 8.])
Note that this method is deprecatd. The alternative is to use
map_max_of_link_nodes_to_link
.
>>> vals = grid.map_max_of_link_nodes_to_link(h)
>>> vals[grid.active_links]
array([ 2., 8., 8., 3., 3., 6., 8.])
LLCATS: DEPR LINF NINF CONN
move_origin
(origin)[source]¶Changes the x, y values of all nodes. Initially a grid will have an origin of 0,0, and all x,y values will be relative to 0,0. This will add origin[0] to all x values and origin[1] to all y values.
Note this is most likely useful when importing a DEM that has an absolute location, however it can be used generally.
Parameters: | origin : list of two float values, can be negative.
|
---|
Examples
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((4, 3), 1.0) # rows, columns, spacing
>>> rmg.node_x
array([ 0., 1., 2., 0., 1., 2., 0., 1., 2., 0., 1., 2.])
>>> rmg.node_y
array([ 0., 0., 0., 1., 1., 1., 2., 2., 2., 3., 3., 3.])
>>> rmg.move_origin((5,1.5))
>>> rmg.node_x
array([ 5., 6., 7., 5., 6., 7., 5., 6., 7., 5., 6., 7.])
>>> rmg.node_y
array([ 1.5, 1.5, 1.5, 2.5, 2.5, 2.5, 3.5, 3.5, 3.5, 4.5, 4.5,
4.5])
LLCATS: GINF MEAS
ndim
¶Number of spatial dimensions of the grid.
LLCATS: GINF
neighbors_at_node
¶Get neighboring nodes.
LLCATS: NINF CONN
node_at_cell
¶Node ID associated with grid cells.
Examples
>>> from landlab import RasterModelGrid, BAD_INDEX_VALUE
>>> grid = RasterModelGrid((4, 5))
>>> grid.node_at_cell
array([ 6, 7, 8,
11, 12, 13])
LLCATS: NINF CINF CONN
node_at_core_cell
¶Get array of nodes associated with core cells.
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> mg = RasterModelGrid((4, 5), 1.)
>>> mg.status_at_node[8] = CLOSED_BOUNDARY
>>> mg.node_at_core_cell
array([ 6, 7, 11, 12, 13])
LLCATS: NINF CINF BC CONN
node_at_link_head
¶Get array of the node at each link head (to-node).
Examples
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5), 1.)
>>> mg.node_at_link_head[:5]
array([1, 2, 3, 4, 5])
LLCATS: NINF LINF CONN
node_at_link_tail
¶Get array of the node at each link tail (from-node).
Examples
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5), 1.)
>>> mg.node_at_link_tail[:5]
array([0, 1, 2, 3, 0])
LLCATS: NINF LINF CONN
node_axis_coordinates
(*args, **kwds)[source]¶Get the coordinates of nodes along a particular axis.
Return node coordinates from a given axis (defaulting to 0). Axis numbering is the same as that for numpy arrays. That is, the zeroth axis is along the rows, and the first along the columns.
Parameters: | axis : int, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((4, 5))
>>> grid.node_axis_coordinates(0)
array([ 0., 0., 0., 0., 0.,
1., 1., 1., 1., 1.,
2., 2., 2., 2., 2.,
3., 3., 3., 3., 3.])
>>> grid.node_axis_coordinates(1)
array([ 0., 1., 2., 3., 4.,
0., 1., 2., 3., 4.,
0., 1., 2., 3., 4.,
0., 1., 2., 3., 4.])
LLCATS: GINF NINF MEAS
node_is_boundary
(ids, boundary_flag=None)[source]¶Check if nodes are boundary nodes.
Check if nodes at given ids are boundary nodes. Use the boundary_flag to specify a particular boundary type status flag.
Parameters: | ids : ndarray
boundary_flag : int, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> mg = RasterModelGrid((4, 5))
>>> mg.node_is_boundary([0, 6])
array([ True, False], dtype=bool)
>>> mg.node_is_boundary([0, 6], boundary_flag=CLOSED_BOUNDARY)
array([False, False], dtype=bool)
LLCATS: NINF BC
node_unit_vector_sum_x
¶Note
This method is deprecated as of Landlab version 0.5.
Use unit_vector_sum_xcomponent_at_node()
instead.
LLCATS: DEPR NINF MEAS
node_unit_vector_sum_y
¶Note
This method is deprecated as of Landlab version 0.5.
Use unit_vector_sum_ycomponent_at_node()
instead.
LLCATS: DEPR NINF MEAS
node_x
¶Get array of the x-coordinates of nodes.
See also
x_of_node
Examples
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5), (2., 3.))
>>> mg.node_x.reshape((4, 5))
array([[ 0., 3., 6., 9., 12.],
[ 0., 3., 6., 9., 12.],
[ 0., 3., 6., 9., 12.],
[ 0., 3., 6., 9., 12.]])
LLCATS: NINF MEAS
node_y
¶Get array of the y-coordinates of nodes.
LLCATS: NINF MEAS
nodes
¶Get node ids for the grid.
Examples
>>> from landlab import RadialModelGrid
>>> mg = RadialModelGrid(num_shells=1)
>>> mg.nodes
array([0, 1, 2, 3, 4, 5, 6])
LLCATS: NINF
number_of_active_faces
¶Total number of active faces.
Returns: | int
|
---|
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((3, 4))
>>> grid.number_of_active_faces
7
The number of active faces is updated when a node status changes.
>>> from landlab import CLOSED_BOUNDARY
>>> grid.status_at_node[6] = CLOSED_BOUNDARY
>>> grid.number_of_active_faces
3
LLCATS: FINF BC
number_of_active_links
¶Number of active links.
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> mg = RasterModelGrid((4, 5), 1.)
>>> mg.number_of_active_links
17
>>> for edge in (mg.nodes_at_left_edge, mg.nodes_at_right_edge,
... mg.nodes_at_bottom_edge):
... mg.status_at_node[edge] = CLOSED_BOUNDARY
>>> mg.number_of_active_links
10
LLCATS: LINF BC
number_of_cells
¶Total number of cells.
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((4, 5))
>>> grid.number_of_cells
6
LLCATS: CINF
number_of_core_cells
¶Number of core cells.
A core cell excludes all boundary cells.
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> grid = RasterModelGrid((4, 5))
>>> grid.number_of_core_cells
6
>>> grid.status_at_node[7] = CLOSED_BOUNDARY
>>> grid.number_of_core_cells
5
LLCATS: CINF BC
number_of_core_nodes
¶Number of core nodes.
The number of core nodes on the grid (i.e., excluding all boundary nodes).
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> grid = RasterModelGrid((4, 5))
>>> grid.number_of_core_nodes
6
>>> grid.status_at_node[7] = CLOSED_BOUNDARY
>>> grid.number_of_core_nodes
5
LLCATS: NINF BC
number_of_corners
¶Total number of corners.
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((4, 5))
>>> grid.number_of_corners
12
LLCATS: CNINF
number_of_elements
(name)[source]¶Number of instances of an element.
Get the number of instances of a grid element in a grid.
Parameters: | name : {‘node’, ‘cell’, ‘link’, ‘face’, ‘core_node’, ‘core_cell’,
|
---|---|
Returns: | int
|
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> mg = RasterModelGrid((4, 5), 1.)
>>> mg.number_of_elements('node')
20
>>> mg.number_of_elements('core_cell')
6
>>> mg.number_of_elements('link')
31
>>> mg.number_of_elements('active_link')
17
>>> mg.status_at_node[8] = CLOSED_BOUNDARY
>>> mg.number_of_elements('link')
31
>>> mg.number_of_elements('active_link')
13
LLCATS: GINF
number_of_faces
¶Total number of faces.
Returns: | int
|
---|
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((3, 4))
>>> grid.number_of_faces
7
LLCATS: FINF
number_of_faces_at_cell
()[source]¶Number of faces attached to each cell.
Examples
>>> from landlab import HexModelGrid
>>> hg = HexModelGrid(3, 3)
>>> hg.number_of_faces_at_cell()
array([6, 6])
LLCATS: FINF CINF CONN
number_of_fixed_links
¶Number of fixed links.
Examples
>>> from landlab import RasterModelGrid, FIXED_GRADIENT_BOUNDARY
>>> mg = RasterModelGrid((4, 5), 1.)
>>> mg.number_of_fixed_links
0
>>> mg.status_at_node[mg.nodes_at_top_edge] = FIXED_GRADIENT_BOUNDARY
>>> mg.number_of_fixed_links
3
LLCATS: LINF BC
number_of_links
¶Total number of links.
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((3, 4))
>>> grid.number_of_links
17
LLCATS: LINF
number_of_links_at_node
¶Number of links connected to each node.
Examples
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((3, 4))
>>> mg.number_of_links_at_node
array([2, 3, 3, 2, 3, 4, 4, 3, 2, 3, 3, 2])
LLCATS: LINF NINF CONN
number_of_nodes
¶Total number of nodes.
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((4, 5))
>>> grid.number_of_nodes
20
LLCATS: NINF
number_of_patches_present_at_link
¶Return the number of patches at a link without a closed node.
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> mg = RasterModelGrid((3, 3))
>>> mg.status_at_node[mg.nodes_at_top_edge] = CLOSED_BOUNDARY
>>> mg.patches_present_at_link
array([[ True, False],
[ True, False],
[ True, False],
[ True, True],
[ True, False],
[ True, False],
[ True, False],
[False, False],
[False, False],
[False, False],
[False, False],
[False, False]], dtype=bool)
>>> mg.number_of_patches_present_at_link
array([1, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0])
LLCATS: PINF LINF BC
number_of_patches_present_at_node
¶Return the number of patches at a node without a closed node.
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> mg = RasterModelGrid((3, 3))
>>> mg.status_at_node[mg.nodes_at_top_edge] = CLOSED_BOUNDARY
>>> mg.patches_present_at_node
array([[ True, False, False, False],
[ True, True, False, False],
[False, True, False, False],
[False, False, False, True],
[False, False, True, True],
[False, False, True, False],
[False, False, False, False],
[False, False, False, False],
[False, False, False, False]], dtype=bool)
>>> mg.number_of_patches_present_at_node
array([1, 2, 1, 1, 2, 1, 0, 0, 0])
LLCATS: PINF NINF BC
open_boundary_nodes
¶Get array of open boundary nodes.
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> mg = RasterModelGrid((4, 5), 1.)
>>> for edge in (mg.nodes_at_left_edge, mg.nodes_at_right_edge,
... mg.nodes_at_bottom_edge):
... mg.status_at_node[edge] = CLOSED_BOUNDARY
>>> mg.open_boundary_nodes
array([16, 17, 18])
LLCATS: NINF BC
patches_present_at_link
¶A boolean array, False where a patch has a closed node or is missing.
The array is the same shape as patches_at_link()
, and is designed
to mask it.
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> mg = RasterModelGrid((3, 3))
>>> mg.status_at_node[mg.nodes_at_top_edge] = CLOSED_BOUNDARY
>>> mg.patches_at_link
array([[ 0, -1],
[ 1, -1],
[ 0, -1],
[ 0, 1],
[ 1, -1],
[ 0, 2],
[ 1, 3],
[ 2, -1],
[ 2, 3],
[ 3, -1],
[ 2, -1],
[ 3, -1]])
>>> mg.patches_present_at_link
array([[ True, False],
[ True, False],
[ True, False],
[ True, True],
[ True, False],
[ True, False],
[ True, False],
[False, False],
[False, False],
[False, False],
[False, False],
[False, False]], dtype=bool)
>>> 1 in mg.patches_at_link * mg.patches_present_at_link
True
>>> 2 in mg.patches_at_link * mg.patches_present_at_link
False
LLCATS: PINF LINF
patches_present_at_node
¶A boolean array, False where a patch has a closed node or is missing.
The array is the same shape as patches_at_node()
, and is designed
to mask it.
Note that in cases where patches may have more than 3 nodes (e.g., rasters), a patch is considered still present as long as at least 3 open nodes are present.
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> mg = RasterModelGrid((3, 3))
>>> mg.status_at_node[mg.nodes_at_top_edge] = CLOSED_BOUNDARY
>>> mg.patches_at_node
array([[ 0, -1, -1, -1],
[ 1, 0, -1, -1],
[-1, 1, -1, -1],
[ 2, -1, -1, 0],
[ 3, 2, 0, 1],
[-1, 3, 1, -1],
[-1, -1, -1, 2],
[-1, -1, 2, 3],
[-1, -1, 3, -1]])
>>> mg.patches_present_at_node
array([[ True, False, False, False],
[ True, True, False, False],
[False, True, False, False],
[False, False, False, True],
[False, False, True, True],
[False, False, True, False],
[False, False, False, False],
[False, False, False, False],
[False, False, False, False]], dtype=bool)
>>> 1 in mg.patches_at_node * mg.patches_present_at_node
True
>>> 2 in mg.patches_at_node * mg.patches_present_at_node
False
LLCATS: PINF NINF
resolve_values_on_active_links
(*args, **kwargs)[source]¶Resolve the xy-components of active links.
Note
This method is deprecated as of Landlab version 1.0.
Use no replacement()
instead.
Resolves values provided defined on active links into the x and y directions. Returns values_along_x, values_along_y
LLCATS: LINF
resolve_values_on_links
(link_values, out=None)[source]¶Resolve the xy-components of links.
Resolves values provided defined on links into the x and y directions. Returns values_along_x, values_along_y
LLCATS: LINF
set_closed_nodes
(*args, **kwargs)[source]¶Make nodes closed boundaries.
Sets the given nodes’ boundary condition statuses to CLOSED_BOUNDARY (==4), and resets the list of active links to reflect any changes.
LLCATS: DEPR NINF BC
set_nodata_nodes_to_closed
(node_data, nodata_value)[source]¶Make no-data nodes closed boundaries.
Sets node status to CLOSED_BOUNDARY
for all nodes whose value
of node_data is equal to the nodata_value.
Any links connected to CLOSED_BOUNDARY
nodes are automatically
set to INACTIVE_LINK
boundary.
Parameters: | node_data : ndarray
nodata_value : float
|
---|
Examples
The following example uses the following grid:
*--I--->o------>o------>o
^ ^ ^ ^
I I | |
| | | |
*--I--->*--I--->o------>o
^ ^ ^ ^
I I I I
| | | |
*--I--->*--I--->*--I--->*
Note
Links set to ACTIVE_LINK
are not shown in this diagram.
*
indicates the nodes that are set to CLOSED_BOUNDARY
o
indicates the nodes that are set to CORE_NODE
I
indicates the links that are set to INACTIVE_LINK
>>> import numpy as np
>>> import landlab as ll
>>> mg = ll.RasterModelGrid((3, 4), 1.0)
>>> mg.status_at_node
array([1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1], dtype=int8)
>>> h = np.array([-9999, -9999, -9999, -9999, -9999, -9999, 12345.,
... 0., -9999, 0., 0., 0.])
>>> mg.set_nodata_nodes_to_closed(h, -9999)
>>> mg.status_at_node
array([4, 4, 4, 4, 4, 4, 0, 1, 4, 1, 1, 1], dtype=int8)
LLCATS: BC NINF
set_nodata_nodes_to_fixed_gradient
(node_data, nodata_value)[source]¶Make no-data nodes fixed gradient boundaries.
Set node status to
FIXED_GRADIENT_BOUNDARY
for all nodes whose value of node_data is equal to nodata_value.Any links between
FIXED_GRADIENT_BOUNDARY
nodes andCORE_NODES
are automatically set toFIXED_LINK
boundary status.
Parameters: | node_data : ndarray
|
---|
LLCATS: BC NINF
set_nodata_nodes_to_inactive
(*args, **kwargs)[source]¶Make no-data nodes inactive.
Note
This method is deprecated as of Landlab version 0.2.
Useset_nodata_nodes_to_closed()
instead.
Set the status to CLOSED_BOUNDARY for all nodes whose value of node_data is equal to the nodata_value.
Parameters: | node_data : ndarray
|
---|
LLCATS: DEPR NINF BC
status_at_link
¶Get array of the status of all links.
LLCATS: BC LINF
status_at_node
¶Get array of the boundary status for each node.
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> from landlab import FIXED_GRADIENT_BOUNDARY, FIXED_LINK
>>> mg = RasterModelGrid((4, 5), 1.)
>>> mg.status_at_node.reshape((4, 5))
array([[1, 1, 1, 1, 1],
[1, 0, 0, 0, 1],
[1, 0, 0, 0, 1],
[1, 1, 1, 1, 1]], dtype=int8)
>>> np.any(mg.status_at_link == FIXED_LINK)
False
>>> mg.status_at_node[mg.nodes_at_left_edge] = FIXED_GRADIENT_BOUNDARY
>>> mg.status_at_node.reshape((4, 5))
array([[2, 1, 1, 1, 1],
[2, 0, 0, 0, 1],
[2, 0, 0, 0, 1],
[2, 1, 1, 1, 1]], dtype=int8)
>>> np.any(mg.status_at_link == FIXED_LINK) # links auto-update
True
LLCATS: NINF BC
unit_vector_sum_xcomponent_at_node
¶Get array of x-component of unit vector sums at each node.
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((3, 3))
>>> len(grid.unit_vector_sum_xcomponent_at_node) == grid.number_of_nodes
True
>>> grid.unit_vector_sum_xcomponent_at_node
array([ 1., 2., 1., 1., 2., 1., 1., 2., 1.])
LLCATS: NINF MEAS
unit_vector_sum_ycomponent_at_node
¶Get array of y-component of unit vector sums at each node.
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((3, 3))
>>> len(grid.unit_vector_sum_ycomponent_at_node) == grid.number_of_nodes
True
>>> grid.unit_vector_sum_ycomponent_at_node
array([ 1., 1., 1., 2., 2., 2., 1., 1., 1.])
LLCATS: NINF MEAS
unit_vector_xcomponent_at_link
¶Get array of x-component of unit vector for links.
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((3, 3))
>>> len(grid.unit_vector_xcomponent_at_link) == grid.number_of_links + 1
True
>>> grid.unit_vector_xcomponent_at_link
array([ 1., 1., 0., 0., 0.,
1., 1., 0., 0., 0., 1., 1., 0.])
LLCATS: LINF MEAS
unit_vector_ycomponent_at_link
¶Get array of y-component of unit vector for links.
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((3, 3))
>>> len(grid.unit_vector_ycomponent_at_link) == grid.number_of_links + 1
True
>>> grid.unit_vector_ycomponent_at_link
array([ 0., 0., 1., 1., 1.,
0., 0., 1., 1., 1., 0., 0., 0.])
LLCATS: LINF MEAS
upwind_links_at_node
(values, bad_index=-1)[source]¶Return an (nnodes, X) shape array of link IDs of which links are upwind of each node, according to values (field or array).
X is the maximum upwind links at any node. Nodes with fewer upwind links than this have additional slots filled with bad_index. Links are ordered anticlockwise from east.
Parameters: | values : str or array
|
---|---|
Returns: | ndarray
|
LLCATS: LINF NINF CONN
width_of_face
¶Width of grid faces.
Examples
>>> from landlab import RasterModelGrid, HexModelGrid
>>> mg = RasterModelGrid((3, 4), (1., 2.))
>>> mg.width_of_face
array([ 2., 2., 2., 1., 1., 1., 1.])
>>> mg = HexModelGrid(3, 3)
>>> np.allclose(mg.width_of_face, 0.57735027)
True
LLCATS: FINF MEAS
x_of_cell
¶Get array of the x-coordinates of nodes at cells.
Examples
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5), (2., 3.))
>>> mg.x_of_cell.reshape((2, 3))
array([[ 3., 6., 9.],
[ 3., 6., 9.]])
LLCATS: CINF MEAS
x_of_face
¶Get array of the x-coordinates of face midpoints.
Examples
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5), (2., 3.))
>>> mg.x_of_face
array([ 3. , 6. , 9. , 1.5, 4.5, 7.5, 10.5,
3. , 6. , 9. , 1.5, 4.5, 7.5, 10.5,
3. , 6. , 9. ])
LLCATS: FINF MEAS
x_of_link
¶Get array of the x-coordinates of link midpoints.
Examples
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5), (2., 3.))
>>> mg.x_of_link
array([ 1.5, 4.5, 7.5, 10.5, 0. , 3. , 6. , 9. , 12. ,
1.5, 4.5, 7.5, 10.5, 0. , 3. , 6. , 9. , 12. ,
1.5, 4.5, 7.5, 10.5, 0. , 3. , 6. , 9. , 12. ,
1.5, 4.5, 7.5, 10.5])
LLCATS: LINF MEAS
x_of_node
¶Get array of the x-coordinates of nodes.
LLCATS: NINF MEAS
y_of_cell
¶Get array of the y-coordinates of nodes at cells.
Examples
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5), (2., 3.))
>>> mg.y_of_cell.reshape((2, 3))
array([[ 2., 2., 2.],
[ 4., 4., 4.]])
LLCATS: CINF MEAS
y_of_face
¶Get array of the y-coordinates of face midpoints.
Examples
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5), (2., 3.))
>>> mg.y_of_face
array([ 1., 1., 1., 2., 2., 2., 2., 3., 3., 3.,
4., 4., 4., 4., 5., 5., 5.])
LLCATS: FINF MEAS
y_of_link
¶Get array of the y-coordinates of link midpoints.
Examples
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5), (2., 3.))
>>> mg.y_of_link
array([ 0., 0., 0., 0., 1., 1., 1., 1., 1.,
2., 2., 2., 2., 3., 3., 3., 3., 3.,
4., 4., 4., 4., 5., 5., 5., 5., 5.,
6., 6., 6., 6.])
LLCATS: LINF MEAS
y_of_node
¶Get array of the y-coordinates of nodes.
See also
node_y
Examples
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5), (2., 3.))
>>> mg.y_of_node.reshape((4, 5))
array([[ 0., 0., 0., 0., 0.],
[ 2., 2., 2., 2., 2.],
[ 4., 4., 4., 4., 4.],
[ 6., 6., 6., 6., 6.]])
LLCATS: NINF MEAS
find_true_vector_from_link_vector_pair
(L1, L2, b1x, b1y, b2x, b2y)[source]¶Separate a pair of links with vector values into x and y components.
The concept here is that a pair of adjacent links attached to a node are projections of a ‘true’ but unknown vector. This function finds and returns the x and y components of this true vector. The trivial case is the situation in which the two links are orthogonal and aligned with the grid axes, in which case the vectors of these two links are the x and y components.
Parameters: | L1, L2 : float
b1x, b1y, b2x, b2y : float
|
---|---|
Returns: | ax, ay : float
|
Notes
The function does an inverse vector projection. Suppose we have a given ‘true’ vector \(a\), and we want to project it onto two other lines with unit vectors (b1x,b1y) and (b2x,b2y). In the context of Landlab, the ‘true’ vector is some unknown vector quantity, which might for example represent the local water flow velocity. The lines represent two adjacent links in the grid.
Let \(\mathbf{a}\) be the true vector, \(\mathbf{B}\) be a different vector with unit vector \(\mathbf{b}\), and \(L\) be the scalar projection of a onto B. Then,
..math:
L = \mathbf{a} \dot \mathbf{b} = a_x b_x + a_y b_y,
where \((a_x,a_y)\) are the components of a and \((b_x,b_y)\) are the components of the unit vector b.
In this case, we know b (the link unit vector), and we want to know the x and y components of a. The problem is that we have one equation and two unknowns (\(a_x\) and \(a_y\)). But we can solve this if we have two vectors, both of which are projections of a. Using the subscripts 1 and 2 to denote the two vectors, we can obtain equations for both \(a_x\) and \(a_y\):
..math:
a_x = L_1 / b_{1x} - a_y b_{1y} / b_{1x}
a_y = L_2 / b_{2y} - a_x b_{2x} / b_{2y}
Substituting the second into the first,
..math:
a_x = [L_1/b_{1x}-L_2 b_{1y}/(b_{1x} b_{2y})] / [1-b_{1y} b_{2x}/(b_{1x} b_{2y})]
Hence, we find the original vector \((a_x,a_y)\) from two links with unit vectors \((b_{1x},b_{1y})\) and \((b_{2x},b_{2y})\) and associated values \(L_1\) and \(L_2\).
Note that the above equations require that \(b_{1x}>0\) and \(b_{2y}>0\). If this isn’t the case, we invert the order of the two links, which requires \(b_{2x}>0\) and \(b_{1y}>0\). If none of these conditions is met, then we have a degenerate case.
Examples
The following example represents the active links in a 7-node hexagonal grid, with just one core node. The ‘true’ vector has a magnitude of 5 units and an orientation of 30 degrees, pointing up and to the right (i.e., the postive-x and postive-y quadrant), so that its vector components are 4 (x) and 3 (y) (in other words, it is a 3-4-5 triangle). The values assigned to L below are the projection of that true vector onto the six link vectors. The algorithm should recover the correct vector component values of 4 and 3. The FOR loop examines each pair of links in turn.
>>> import numpy as np
>>> from landlab.grid.base import find_true_vector_from_link_vector_pair
>>> bx = np.array([0.5, -0.5, -1., -0.5, 1., 0.5])
>>> by = np.array([0.866, 0.866, 0., -0.866, 0., -0.866])
>>> L = np.array([4.6, 0.6, -4., -4.6, 4., -0.6])
>>> for i in range(5):
... ax, ay = find_true_vector_from_link_vector_pair(
... L[i], L[i+1], bx[i], by[i], bx[i+1], by[i+1])
... round(ax,1), round(ay,1)
(4.0, 3.0)
(4.0, 3.0)
(4.0, 3.0)
(4.0, 3.0)
(4.0, 3.0)
Map values from one grid element to another.
map_link_head_node_to_link (grid, var_name[, out]) |
Map values from a link head nodes to links. |
map_link_tail_node_to_link (grid, var_name[, out]) |
Map values from a link tail nodes to links. |
map_min_of_link_nodes_to_link (grid, var_name) |
Map the minimum of a link’s nodes to the link. |
map_max_of_link_nodes_to_link (grid, var_name) |
Map the maximum of a link’s nodes to the link. |
map_mean_of_link_nodes_to_link (grid, var_name) |
Map the mean of a link’s nodes to the link. |
map_value_at_min_node_to_link (grid, ...[, out]) |
Map the the value found in one node array to a link, based on the minimum value found in a second node field or array. |
map_value_at_max_node_to_link (grid, ...[, out]) |
Map the the value found in one node array to a link, based on the maximum value found in a second node field or array. |
map_node_to_cell (grid, var_name[, out]) |
Map values for nodes to cells. |
map_min_of_node_links_to_node (grid, var_name) |
Map the minimum value of a nodes’ links to the node. |
map_max_of_node_links_to_node (grid, var_name) |
Map the maximum value of a nodes’ links to the node. |
map_upwind_node_link_max_to_node (grid, var_name) |
Map the largest magnitude of the links bringing flux into the node to the node. |
map_downwind_node_link_max_to_node (grid, ...) |
Map the largest magnitude of the links carrying flux from the node to the node. |
map_upwind_node_link_mean_to_node (grid, var_name) |
Map the mean magnitude of the links bringing flux into the node to the node. |
map_downwind_node_link_mean_to_node (grid, ...) |
Map the mean magnitude of the links carrying flux out of the node to the node. |
map_value_at_upwind_node_link_max_to_node (...) |
Map the the value found in one link array to a node, based on the largest magnitude value of links bringing fluxes into the node, found in a second node array or field. |
map_value_at_downwind_node_link_max_to_node (...) |
Map the the value found in one link array to a node, based on the largest magnitude value of links carrying fluxes out of the node, found in a second node array or field. |
dummy_func_to_demonstrate_docstring_modification (...) |
A dummy function to demonstrate automated docstring changes. |
Each link has a tail and head node. The tail nodes are located at the start of a link, while the head nodes are located at end of a link.
Below, the numbering scheme for links in RasterModelGrid is illustrated with an example of a four-row by five column grid (4x5). In this example, each * (or X) is a node, the lines represent links, and the ^ and > symbols indicate the direction and head of each link. Link heads in the RasterModelGrid always point in the cardinal directions North (N) or East (E).:
*--27-->*--28-->*--29-->*--30-->*
^ ^ ^ ^ ^
22 23 24 25 26
| | | | |
*--18-->*--19-->*--20-->*--21-->*
^ ^ ^ ^ ^
13 14 15 16 17
| | | | |
*---9-->*--10-->X--11-->*--12-->*
^ ^ ^ ^ ^
4 5 6 7 8
| | | | |
*--0--->*---1-->*--2--->*---3-->*
For example, node ‘X’ has four link-neighbors. From south and going clockwise, these neighbors are [6, 10, 15, 11]. Both link 6 and link 10 have node ‘X’ as their ‘head’ node, while links 15 and 11 have node ‘X’ as their tail node.
dummy_func_to_demonstrate_docstring_modification
(grid, some_arg)[source]¶A dummy function to demonstrate automated docstring changes.
Construction:
dummy_func_to_demonstrate_docstring_modification(grid, some_arg)
Parameters: | grid : ModelGrid
some_arg : whatever
|
---|
Examples
...
LLCATS: DEPR MAP
map_downwind_node_link_max_to_node
(grid, var_name, out=None)[source]¶Map the largest magnitude of the links carrying flux from the node to the node.
map_downwind_node_link_max_to_node iterates across the grid and identifies the link values at each link connected to a node. It then uses the link_dirs_at_node data structure to identify links carrying flux out of the node, then maps the maximum magnitude of ‘var_name’ found on these links onto the node. If no downwind link is found, the value will be recorded as zero.
Construction:
map_downwind_node_link_max_to_node(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_downwind_node_link_max_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.])
>>> map_downwind_node_link_max_to_node(rmg, 'grad')
array([ 1., 2., 1., 0.,
1., 2., 1., 0.,
1., 2., 1., 0.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_downwind_node_link_max_to_node(rmg, 'grad',
... out=values_at_nodes)
>>> values_at_nodes
array([ 1., 2., 1., 0.,
1., 2., 1., 0.,
1., 2., 1., 0.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
map_downwind_node_link_mean_to_node
(grid, var_name, out=None)[source]¶Map the mean magnitude of the links carrying flux out of the node to the node.
map_downwind_node_link_mean_to_node iterates across the grid and identifies the link values at each link connected to a node. It then uses the link_dirs_at_node data structure to identify links carrying flux out of the node, then maps the mean magnitude of ‘var_name’ found on these links onto the node. Links with zero values are not included in the means, and zeros are returned if no upwind links are found.
Construction:
map_downwind_node_link_mean_to_node(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_downwind_node_link_mean_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... -2., -3., -4., -5.,
... -1., -2., -1.,
... -1., -2., -3., -4.,
... -1., -2., -1.])
>>> map_downwind_node_link_mean_to_node(rmg, 'grad')
array([ 1.5, 2.5, 2.5, 5. ,
1. , 2. , 2. , 4. ,
1. , 2. , 1. , 0. ])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_downwind_node_link_mean_to_node(rmg, 'grad',
... out=values_at_nodes)
>>> values_at_nodes
array([ 1.5, 2.5, 2.5, 5. ,
1. , 2. , 2. , 4. ,
1. , 2. , 1. , 0. ])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
map_link_head_node_to_link
(grid, var_name, out=None)[source]¶Map values from a link head nodes to links.
Iterate over a grid and identify the node at the head. For each link, the value of var_name at the head node is mapped to the corresponding link.
In a RasterModelGrid, each one node has two adjacent “link heads”. This means each node value is mapped to two corresponding links.
Construction:
map_link_head_node_to_link(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_link_head_node_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['z'] = np.array([ 0, 1, 2, 3,
... 4, 5, 6, 7,
... 8, 9, 10, 11])
>>> map_link_head_node_to_link(rmg, 'z')
array([ 1., 2., 3., 4., 5., 6., 7., 5., 6., 7., 8.,
9., 10., 11., 9., 10., 11.])
>>> values_at_links = rmg.empty(at='link')
>>> rtn = map_link_head_node_to_link(rmg, 'z', out=values_at_links)
>>> values_at_links
array([ 1., 2., 3., 4., 5., 6., 7., 5., 6., 7., 8.,
9., 10., 11., 9., 10., 11.])
>>> rtn is values_at_links
True
LLCATS: NINF LINF MAP
map_link_tail_node_to_link
(grid, var_name, out=None)[source]¶Map values from a link tail nodes to links.
map_link_tail_node_to_link iterates across the grid and identifies the node at the “tail”, or the “from” node for each link. For each link, the value of ‘var_name’ at the “from” node is mapped to the corresponding link.
In a RasterModelGrid, each one node has two adjacent “link tails”. This means each node value is mapped to two corresponding links.
Construction:
map_link_tail_node_to_link(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_link_tail_node_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['z'] = np.array([ 0, 1, 2, 3,
... 4, 5, 6, 7,
... 8, 9, 10, 11])
>>> map_link_tail_node_to_link(rmg, 'z')
array([ 0., 1., 2., 0., 1., 2., 3., 4., 5., 6., 4.,
5., 6., 7., 8., 9., 10.])
>>> values_at_links = rmg.empty(at='link')
>>> rtn = map_link_tail_node_to_link(rmg, 'z', out=values_at_links)
>>> values_at_links
array([ 0., 1., 2., 0., 1., 2., 3., 4., 5., 6., 4.,
5., 6., 7., 8., 9., 10.])
>>> rtn is values_at_links
True
LLCATS: NINF LINF MAP
map_link_vector_sum_to_patch
(grid, var_name, ignore_inactive_links=True, out=None)[source]¶Map the vector sum of links around a patch to the patch.
The resulting vector is returned as a length-2 list, with the two items being arrays of the x component and the y component of the resolved vectors at the patches, respectively.
Construction:
map_link_vector_sum_to_patch(grid, var_name, ignore_inctive_links=True,
out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
ignore_inactive_links : bool
out : len-2 list of npatches-long arrays, optional
|
---|---|
Returns: | len-2 list of arrays
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_link_vector_sum_to_patch
>>> from landlab import HexModelGrid
>>> from landlab import CLOSED_BOUNDARY, CORE_NODE, INACTIVE_LINK
>>> mg = HexModelGrid(4, 3)
>>> interior_nodes = mg.status_at_node == CORE_NODE
>>> exterior_nodes = mg.status_at_node != CORE_NODE
Add a ring of closed nodes at the edge:
>>> mg.status_at_node[exterior_nodes] = CLOSED_BOUNDARY
This gives us 5 core nodes, 7 active links, and 3 present patches
>>> (mg.number_of_core_nodes == 5 and mg.number_of_active_links == 7)
True
>>> A = mg.add_ones('link', 'vals')
>>> A.fill(9.) # any old values on the inactive links
>>> A[mg.active_links] = np.array([ 1., -1., 1., -1., -1., -1., -1.])
This setup should give present patch 0 pure east, patch 1 zero (vorticity), and patch 2 westwards and downwards components.
>>> xcomp, ycomp = map_link_vector_sum_to_patch(mg, 'vals')
>>> np.allclose(xcomp[[6, 9, 10]], [2., 0., -1])
True
>>> np.allclose(ycomp[[6, 9, 10]]/np.sqrt(3.), [0., 0., -1.])
True
These are the patches with INACTIVE_LINKs on all three sides:
>>> absent_patches = np.array([0, 1, 2, 4, 8, 11, 12, 15, 16, 17, 18])
>>> np.allclose(xcomp[absent_patches], 0.)
True
>>> np.allclose(ycomp[absent_patches], 0.)
True
Now demonstrate the remaining functionality:
>>> A = mg.at_link['vals'].copy()
>>> A.fill(1.)
>>> _ = map_link_vector_sum_to_patch(mg, A, ignore_inactive_links=False,
... out=[xcomp, ycomp])
>>> np.allclose(xcomp[absent_patches], 0.)
False
>>> np.allclose(ycomp[absent_patches], 0.)
False
LLCATS: PINF LINF MAP
map_max_of_link_nodes_to_link
(grid, var_name, out=None)[source]¶Map the maximum of a link’s nodes to the link.
map_max_of_link_nodes_to_link iterates across the grid and identifies the node values at both the “head” and “tail” of a given link. This function evaluates the value of ‘var_name’ at both the “to” and “from” node. The maximum value of the two node values is then mapped to the link.
Construction:
map_max_of_link_nodes_to_link(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_max_of_link_nodes_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('node', 'z',
... [[0, 1, 2, 3],
... [7, 6, 5, 4],
... [8, 9, 10, 11]])
>>> map_max_of_link_nodes_to_link(rmg, 'z')
array([ 1., 2., 3., 7., 6., 5., 4., 7., 6., 5., 8.,
9., 10., 11., 9., 10., 11.])
>>> values_at_links = rmg.empty(at='link')
>>> rtn = map_max_of_link_nodes_to_link(rmg, 'z', out=values_at_links)
>>> values_at_links
array([ 1., 2., 3., 7., 6., 5., 4., 7., 6., 5., 8.,
9., 10., 11., 9., 10., 11.])
>>> rtn is values_at_links
True
LLCATS: NINF LINF MAP
map_max_of_node_links_to_node
(grid, var_name, out=None)[source]¶Map the maximum value of a nodes’ links to the node.
map_max_of_node_links_to_node iterates across the grid and identifies the link values at each link connected to a node. This function finds the maximum value of ‘var_name’ of each set of links, and then maps this value to the node. Note no attempt is made to honor the directionality of the links.
Construction:
map_max_of_node_links_to_node(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_max_of_node_links_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.arange(rmg.number_of_links)
>>> map_max_of_node_links_to_node(rmg, 'grad')
array([ 3., 4., 5., 6.,
10., 11., 12., 13.,
14., 15., 16., 16.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_max_of_node_links_to_node(rmg, 'grad', out=values_at_nodes)
>>> values_at_nodes
array([ 3., 4., 5., 6.,
10., 11., 12., 13.,
14., 15., 16., 16.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
map_max_of_patch_nodes_to_patch
(grid, var_name, ignore_closed_nodes=True, out=None)[source]¶Map the maximum value of nodes around a patch to the patch.
Construction:
map_max_of_patch_nodes_to_patch(grid, var_name,
ignore_closed_nodes=True, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
ignore_closed_nodes : bool
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_max_of_patch_nodes_to_patch
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 3., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> map_max_of_patch_nodes_to_patch(rmg, 'vals')
array([ 5., 4., 3.,
4., 4., 3.])
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 3., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> rmg.status_at_node[rmg.node_x > 1.5] = CLOSED_BOUNDARY
>>> ans = np.zeros(6, dtype=float)
>>> _ = map_max_of_patch_nodes_to_patch(rmg, 'vals', out=ans)
>>> ans
array([ 5., 4., 0.,
4., 4., 0.])
LLCATS: PINF NINF MAP
map_mean_of_link_nodes_to_link
(grid, var_name, out=None)[source]¶Map the mean of a link’s nodes to the link.
map_mean_of_link_nodes_to_link iterates across the grid and identifies the node values at both the “head” and “tail” of a given link. This function takes the sum of the two values of ‘var_name’ at both the “to” and “from” node. The average value of the two node values of ‘var_name’ is then mapped to the link.
Construction:
map_mean_of_link_nodes_to_link(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_mean_of_link_nodes_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['z'] = np.array([ 0, 1, 2, 3,
... 4, 5, 6, 7,
... 8, 9, 10, 11])
>>> map_mean_of_link_nodes_to_link(rmg, 'z')
array([ 0.5, 1.5, 2.5, 2. , 3. , 4. , 5. , 4.5, 5.5,
6.5, 6. , 7. , 8. , 9. , 8.5, 9.5, 10.5])
>>> values_at_links = rmg.empty(at='link')
>>> rtn = map_mean_of_link_nodes_to_link(rmg, 'z', out=values_at_links)
>>> values_at_links
array([ 0.5, 1.5, 2.5, 2. , 3. , 4. , 5. , 4.5, 5.5,
6.5, 6. , 7. , 8. , 9. , 8.5, 9.5, 10.5])
>>> rtn is values_at_links
True
LLCATS: NINF LINF MAP
map_mean_of_patch_nodes_to_patch
(grid, var_name, ignore_closed_nodes=True, out=None)[source]¶Map the mean value of nodes around a patch to the patch.
Construction:
map_mean_of_patch_nodes_to_patch(grid, var_name,
ignore_closed_nodes=True, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
ignore_closed_nodes : bool
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_mean_of_patch_nodes_to_patch
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 5., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> map_mean_of_patch_nodes_to_patch(rmg, 'vals')
array([ 4.5, 3.5, 2.5,
3.5, 2.5, 1.5])
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 5., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> rmg.status_at_node[rmg.node_x > 1.5] = CLOSED_BOUNDARY
>>> ans = np.zeros(6, dtype=float)
>>> _ = map_mean_of_patch_nodes_to_patch(rmg, 'vals', out=ans)
>>> ans
array([ 4.5, 4. , 0. ,
3.5, 3. , 0. ])
LLCATS: PINF NINF MAP
map_min_of_link_nodes_to_link
(grid, var_name, out=None)[source]¶Map the minimum of a link’s nodes to the link.
map_min_of_link_nodes_to_link iterates across the grid and identifies the node values at both the “head” and “tail” of a given link. This function evaluates the value of ‘var_name’ at both the “to” and “from” node. The minimum value of the two node values is then mapped to the link.
Construction:
map_min_of_link_nodes_to_link(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_min_of_link_nodes_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('node', 'z',
... [[ 0, 1, 2, 3],
... [ 7, 6, 5, 4],
... [ 8, 9, 10, 11]])
>>> map_min_of_link_nodes_to_link(rmg, 'z')
array([ 0., 1., 2., 0., 1., 2., 3., 6., 5., 4., 7.,
6., 5., 4., 8., 9., 10.])
>>> values_at_links = rmg.empty(at='link')
>>> rtn = map_min_of_link_nodes_to_link(rmg, 'z', out=values_at_links)
>>> values_at_links
array([ 0., 1., 2., 0., 1., 2., 3., 6., 5., 4., 7.,
6., 5., 4., 8., 9., 10.])
>>> rtn is values_at_links
True
LLCATS: NINF LINF MAP
map_min_of_node_links_to_node
(grid, var_name, out=None)[source]¶Map the minimum value of a nodes’ links to the node.
map_min_of_node_links_to_node iterates across the grid and identifies the link values at each link connected to a node. This function finds the minimum value of ‘var_name’ of each set of links, and then maps this value to the node. Note no attempt is made to honor the directionality of the links.
Construction:
map_min_of_node_links_to_node(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_min_of_node_links_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.arange(rmg.number_of_links)
>>> map_min_of_node_links_to_node(rmg, 'grad')
array([ 0., 0., 1., 2.,
3., 4., 5., 6.,
10., 11., 12., 13.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_min_of_node_links_to_node(rmg, 'grad', out=values_at_nodes)
>>> values_at_nodes
array([ 0., 0., 1., 2.,
3., 4., 5., 6.,
10., 11., 12., 13.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
map_min_of_patch_nodes_to_patch
(grid, var_name, ignore_closed_nodes=True, out=None)[source]¶Map the minimum value of nodes around a patch to the patch.
Construction:
map_min_of_patch_nodes_to_patch(grid, var_name,
ignore_closed_nodes=True, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
ignore_closed_nodes : bool
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_min_of_patch_nodes_to_patch
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 5., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> map_min_of_patch_nodes_to_patch(rmg, 'vals')
array([ 4., 3., 2.,
2., 1., 0.])
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 5., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> rmg.status_at_node[rmg.node_x > 1.5] = CLOSED_BOUNDARY
>>> ans = np.zeros(6, dtype=float)
>>> _ = map_min_of_patch_nodes_to_patch(rmg, 'vals', out=ans)
>>> ans
array([ 4., 4., 0.,
2., 2., 0.])
LLCATS: PINF NINF MAP
map_node_to_cell
(grid, var_name, out=None)[source]¶Map values for nodes to cells.
map_node_to_cell iterates across the grid and identifies the all node values of ‘var_name’.
This function takes node values of ‘var_name’ and mapes that value to the corresponding cell area for each node.
Construction:
map_node_to_cell(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_node_to_cell
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('node', 'z', np.arange(12.))
>>> map_node_to_cell(rmg, 'z')
array([ 5., 6.])
>>> values_at_cells = rmg.empty(at='cell')
>>> rtn = map_node_to_cell(rmg, 'z', out=values_at_cells)
>>> values_at_cells
array([ 5., 6.])
>>> rtn is values_at_cells
True
LLCATS: CINF NINF MAP
map_upwind_node_link_max_to_node
(grid, var_name, out=None)[source]¶Map the largest magnitude of the links bringing flux into the node to the node.
map_upwind_node_link_max_to_node iterates across the grid and identifies the link values at each link connected to a node. It then uses the link_dirs_at_node data structure to identify links bringing flux into the node, then maps the maximum magnitude of ‘var_name’ found on these links onto the node. If no upwind link is found, the value will be recorded as zero.
Construction:
map_upwind_node_link_max_to_node(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_upwind_node_link_max_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.])
>>> map_upwind_node_link_max_to_node(rmg, 'grad')
array([ 0., 1., 2., 1.,
0., 1., 2., 1.,
0., 1., 2., 1.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_upwind_node_link_max_to_node(rmg, 'grad',
... out=values_at_nodes)
>>> values_at_nodes
array([ 0., 1., 2., 1.,
0., 1., 2., 1.,
0., 1., 2., 1.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
map_upwind_node_link_mean_to_node
(grid, var_name, out=None)[source]¶Map the mean magnitude of the links bringing flux into the node to the node.
map_upwind_node_link_mean_to_node iterates across the grid and identifies the link values at each link connected to a node. It then uses the link_dirs_at_node data structure to identify links bringing flux into the node, then maps the mean magnitude of ‘var_name’ found on these links onto the node. Links with zero values are not included in the means, and zeros are returned if no upwind links are found.
Construction:
map_upwind_node_link_mean_to_node(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_upwind_node_link_mean_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... -2., -3., -4., -5.,
... -1., -2., -1.,
... -1., -2., -3., -4.,
... -1., -2., -1.])
>>> map_upwind_node_link_mean_to_node(rmg, 'grad')
array([ 0. , 1. , 2. , 1. ,
2. , 2. , 3. , 3. ,
1. , 1.5, 2.5, 2.5])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_upwind_node_link_mean_to_node(rmg, 'grad',
... out=values_at_nodes)
>>> values_at_nodes
array([ 0. , 1. , 2. , 1. ,
2. , 2. , 3. , 3. ,
1. , 1.5, 2.5, 2.5])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
map_value_at_downwind_node_link_max_to_node
(grid, control_name, value_name, out=None)[source]¶Map the the value found in one link array to a node, based on the largest magnitude value of links carrying fluxes out of the node, found in a second node array or field.
map_downwind_node_link_max_to_node iterates across the grid and identifies the link control_values at each link connected to a node. It then uses the link_dirs_at_node data structure to identify links carrying flux out of the node, then identifies the link with the maximum magnitude. The value of the second field ‘value_name’ at these links is then mapped onto the node. If no downwind link is found, the value will be recorded as zero.
Construction:
map_value_at_downwind_node_link_max_to_node(grid, control_name,
value_name, out=None)
Parameters: | grid : ModelGrid
control_name : array or field name
value_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_value_at_downwind_node_link_max_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.])
>>> rmg.at_link['vals'] = np.arange(rmg.number_of_links, dtype=float)
>>> map_value_at_downwind_node_link_max_to_node(rmg, 'grad', 'vals')
array([ 0., 1., 2., 0.,
7., 8., 9., 0.,
14., 15., 16., 0.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_value_at_downwind_node_link_max_to_node(rmg, 'grad', 'vals',
... out=values_at_nodes)
>>> values_at_nodes
array([ 0., 1., 2., 0.,
7., 8., 9., 0.,
14., 15., 16., 0.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
map_value_at_max_node_to_link
(grid, control_name, value_name, out=None)[source]¶Map the the value found in one node array to a link, based on the maximum value found in a second node field or array.
map_value_at_max_node_to_link iterates across the grid and identifies the node values at both the “head” and “tail” of a given link. This function evaluates the value of ‘control_name’ at both the “to” and “from” node. The value of ‘value_name’ at the node with the maximum value of the two values of ‘control_name’ is then mapped to the link.
Construction:
map_value_at_max_node_to_link(grid, control_name, value_name,
out=None)
Parameters: | grid : ModelGrid
control_name : array or field name
value_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_value_at_max_node_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('node', 'z',
... [[0, 1, 2, 3],
... [7, 6, 5, 4],
... [8, 9, 10, 11]])
>>> _ = rmg.add_field('node', 'vals_to_map',
... [[0, 10, 20, 30],
... [70, 60, 50, 40],
... [80, 90, 100, 110]])
>>> map_value_at_max_node_to_link(rmg, 'z', 'vals_to_map')
array([ 10., 20., 30., 70., 60., 50., 40., 70., 60.,
50., 80., 90., 100., 110., 90., 100., 110.])
LLCATS: NINF LINF MAP
map_value_at_min_node_to_link
(grid, control_name, value_name, out=None)[source]¶Map the the value found in one node array to a link, based on the minimum value found in a second node field or array.
map_value_at_min_node_to_link iterates across the grid and identifies the node values at both the “head” and “tail” of a given link. This function evaluates the value of ‘control_name’ at both the “to” and “from” node. The value of ‘value_name’ at the node with the minimum value of the two values of ‘control_name’ is then mapped to the link.
Construction:
map_value_at_min_node_to_link(grid, control_name, value_name,
out=None)
Parameters: | grid : ModelGrid
control_name : array or field name
value_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_value_at_min_node_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('node', 'z',
... [[0, 1, 2, 3],
... [7, 6, 5, 4],
... [8, 9, 10, 11]])
>>> _ = rmg.add_field('node', 'vals_to_map',
... [[0, 10, 20, 30],
... [70, 60, 50, 40],
... [80, 90, 100, 110]])
>>> map_value_at_min_node_to_link(rmg, 'z', 'vals_to_map')
array([ 0., 10., 20., 0., 10., 20., 30., 60., 50.,
40., 70., 60., 50., 40., 80., 90., 100.])
LLCATS: NINF LINF MAP
map_value_at_upwind_node_link_max_to_node
(grid, control_name, value_name, out=None)[source]¶Map the the value found in one link array to a node, based on the largest magnitude value of links bringing fluxes into the node, found in a second node array or field.
map_upwind_node_link_max_to_node iterates across the grid and identifies the link control_values at each link connected to a node. It then uses the link_dirs_at_node data structure to identify links bringing flux into the node, then identifies the link with the maximum magnitude. The value of the second field ‘value_name’ at these links is then mapped onto the node. If no upwind link is found, the value will be recorded as zero.
Construction:
map_value_at_upwind_node_link_max_to_node(grid, control_name,
value_name, out=None)
Parameters: | grid : ModelGrid
control_name : array or field name
value_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.mappers import map_value_at_upwind_node_link_max_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.])
>>> rmg.at_link['vals'] = np.arange(rmg.number_of_links, dtype=float)
>>> map_value_at_upwind_node_link_max_to_node(rmg, 'grad', 'vals')
array([ 0., 0., 1., 2.,
0., 7., 8., 9.,
0., 14., 15., 16.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_value_at_upwind_node_link_max_to_node(rmg, 'grad', 'vals',
... out=values_at_nodes)
>>> values_at_nodes
array([ 0., 0., 1., 2.,
0., 7., 8., 9.,
0., 14., 15., 16.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
Calculate gradients of quantities over links.
calc_grad_at_active_link (\*args, \*\*kwargs) |
Calculate gradients of node values over active links. |
calc_grad_at_link (grid, vals, \*args, \*\*kwds) |
Calculate gradients of node values at links. |
calculate_gradients_at_faces (\*args, \*\*kwargs) |
Calculate gradients of node values over faces. |
calculate_diff_at_links (\*args, \*\*kwargs) |
Calculate differences of node values over links. |
calculate_diff_at_active_links (\*args, \*\*kwargs) |
Calculate differences of node values over active links. |
calc_aspect_at_node
(grid, slope_component_tuple=None, elevs='topographic__elevation', unit='degrees', ignore_closed_nodes=True)[source]¶Get array of aspect of a surface.
Calculates at returns the aspect of a surface. Aspect is returned as radians clockwise of north, unless input parameter units is set to ‘degrees’.
If slope_component_tuple is provided, i.e., (slope_x, slope_y), the aspect will be calculated from these data.
If it is not, it will be derived from elevation data at the nodes, which can either be a string referring to a grid field (default: ‘topographic__elevation’), or an nnodes-long numpy array of the values themselves.
If ignore_closed_nodes is False, all proximal elevation values will be used in the calculation. If True, only unclosed nodes are used.
Parameters: | grid : ModelGrid
slope_component_tuple : (slope_x_array, slope_y_array) (optional)
elevs : str or array (optional)
unit : {‘degrees’, ‘radians’}
ignore_closed_nodes : bool
|
---|
Examples
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 4))
>>> z = mg.node_x ** 2 + mg.node_y ** 2
>>> mg.calc_aspect_at_node(elevs=z)
array([ 225. , 240.16585039, 255.2796318 , 258.69006753,
209.83414961, 225. , 243.54632481, 248.77808974,
194.7203682 , 206.45367519, 225. , 231.94498651,
191.30993247, 201.22191026, 218.05501349, 225. ])
>>> z = z.max() - z
>>> mg.calc_aspect_at_node(elevs=z)
array([ 45. , 60.16585039, 75.2796318 , 78.69006753,
29.83414961, 45. , 63.54632481, 68.77808974,
14.7203682 , 26.45367519, 45. , 51.94498651,
11.30993247, 21.22191026, 38.05501349, 45. ])
>>> mg = RasterModelGrid((4, 4), (2., 3.))
>>> z = mg.node_x ** 2 + mg.node_y ** 2
>>> mg.calc_aspect_at_node(elevs=z)
array([ 236.30993247, 247.52001262, 259.97326008, 262.40535663,
220.75264634, 234.41577266, 251.13402374, 255.29210302,
201.54258265, 215.47930877, 235.73541937, 242.24162456,
196.69924423, 209.43534223, 229.19345757, 236.30993247])
Note that a small amount of asymmetry arises at the grid edges due to the “missing” nodes beyond the edge of the grid.
LLCATS: NINF SURF
calc_diff_at_link
(grid, vals, *args, **kwds)[source]¶Calculate differences of node values over links.
Calculates the difference in quantity node_values at each link in the grid.
Construction:
calc_diff_at_link(grid, node_values, out=None)
Parameters: | grid : ModelGrid
node_values : ndarray or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 3))
>>> z = np.zeros(9)
>>> z[4] = 1.
>>> rmg.calc_diff_at_link(z)
array([ 0., 0., 0., 1., 0., 1., -1., 0., -1., 0., 0., 0.])
LLCATS: LINF GRAD
calc_grad_at_active_link
(*args, **kwargs)[source]¶Calculate gradients of node values over active links.
Calculates the gradient in quantity node values at each active link in the grid.
Construction:
calc_grad_at_active_link(grid, node_values, out=None)
Parameters: | grid : ModelGrid
node_values : ndarray or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
LLCATS: DEPR LINF GRAD |
calc_grad_at_link
(grid, vals, *args, **kwds)[source]¶Calculate gradients of node values at links.
Calculates the gradient in node_values at each link in the grid, returning an array of length number_of_links.
Construction:
calc_grad_at_link(grid, node_values, out=None)
Parameters: | grid : ModelGrid
node_values : ndarray or field name (x number of nodes)
out : ndarray, optional (x number of links)
|
---|---|
Returns: | ndarray
|
Examples
>>> from landlab import RasterModelGrid
>>> rg = RasterModelGrid(3, 4, 10.0)
>>> z = rg.add_zeros('node', 'topographic__elevation')
>>> z[5] = 50.0
>>> z[6] = 36.0
>>> calc_grad_at_link(rg, z) # there are 17 links
array([ 0. , 0. , 0. , 0. , 5. , 3.6, 0. , 5. , -1.4, -3.6, 0. ,
-5. , -3.6, 0. , 0. , 0. , 0. ])
>>> from landlab import HexModelGrid
>>> hg = HexModelGrid(3, 3, 10.0)
>>> z = hg.add_zeros('node', 'topographic__elevation', noclobber=False)
>>> z[4] = 50.0
>>> z[5] = 36.0
>>> calc_grad_at_link(hg, z) # there are 11 faces
array([ 0. , 0. , 0. , 5. , 5. , 3.6, 3.6, 0. , 5. , -1.4, -3.6,
0. , -5. , -5. , -3.6, -3.6, 0. , 0. , 0. ])
LLCATS: LINF GRAD
calc_grad_at_patch
(grid, elevs='topographic__elevation', ignore_closed_nodes=True, unit_normal=None, slope_magnitude=None)[source]¶Calculate the components of the gradient at each patch.
If ignore_closed_nodes is True, closed nodes do not affect gradient calculations. If a closed node is present in a patch, the patch gradient is set to zero in both x and y directions.
Parameters: | grid : ModelGrid
elevs : str or ndarray, optional
ignore_closed_nodes : bool
unit_normal : array with shape (num_patches, 3) (optional)
slope_magnitude : array with size num_patches (optional)
|
---|---|
Returns: | gradient_tuple : (x_component_at_patch, y_component_at_patch)
|
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5))
>>> z = mg.node_y
>>> (x_grad, y_grad) = mg.calc_grad_at_patch(elevs=z)
>>> np.allclose(y_grad, np.pi / 4.)
True
>>> np.allclose(x_grad, 0.)
True
LLCATS: PINF GRAD
calc_grad_of_active_link
(*args, **kwargs)[source]¶Calculate gradients at active links.
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((3, 4))
>>> z = np.array([0., 0., 0., 0.,
... 1., 1., 1., 1.,
... 3., 3., 3., 3.])
>>> grid.calc_grad_of_active_link(z)
array([ 1., 1., 0., 0., 0., 2., 2.])
This method is deprecated. Instead, use calc_grad_at_link
.
>>> vals = grid.calc_grad_at_link(z)
>>> vals[grid.active_links]
array([ 1., 1., 0., 0., 0., 2., 2.])
LLCATS: DEPR
calc_slope_at_node
(grid, elevs='topographic__elevation', method='patch_mean', ignore_closed_nodes=True, return_components=False, **kwds)[source]¶Array of slopes at nodes, averaged over neighboring patches.
Produces a value for node slope (i.e., mean gradient magnitude) at each node in a manner analogous to a GIS-style slope map. It averages the gradient on each of the patches surrounding the node, creating a value for node slope that better incorporates nonlocal elevation information. Directional information can still be returned through use of the return_components keyword.
Note that under these definitions, it is not always true that:
mag, cmp = mg.calc_slope_at_node(z)
mag ** 2 == cmp[0] ** 2 + cmp[1] ** 2 # not always true
If ignore_closed_nodes is False, all proximal elevation values will be used in the calculation. If True, only unclosed nodes are used.
Parameters: | grid : ModelGrid
elevs : str or ndarray, optional
method : {‘patch_mean’, ‘Horn’}
ignore_closed_nodes : bool
return_components : bool
|
---|---|
Returns: | float array or length-2 tuple of float arrays
|
Examples
>>> import numpy as np
>>> from landlab import RadialModelGrid, RasterModelGrid
>>> mg = RasterModelGrid((4, 5), 1.)
>>> z = mg.node_x
>>> slopes = mg.calc_slope_at_node(elevs=z)
>>> np.allclose(slopes, 45. / 180. * np.pi)
True
>>> mg = RasterModelGrid((4, 5), 1.)
>>> z = - mg.node_y
>>> slope_mag, cmp = mg.calc_slope_at_node(elevs=z,
... return_components=True)
>>> np.allclose(slope_mag, np.pi / 4.)
True
>>> np.allclose(cmp[0], 0.)
True
>>> np.allclose(cmp[1], - np.pi / 4.)
True
>>> mg = RadialModelGrid(num_shells=9)
>>> z = mg.radius_at_node
>>> slopes = mg.calc_slope_at_node(elevs=z)
>>> mean_ring_slope = []
>>> for i in range(10):
... mean_ring_slope.append(
... slopes[np.isclose(mg.radius_at_node, i)].mean())
Notice the small amounts of numerical error here:
>>> target_mean_ring_slope = [0.85707194785013108, 0.79363155567711452,
... 0.77922185867135429, 0.78359813570962411,
... 0.78433070957439543, 0.78452745144699965,
... 0.78477643475446901, 0.78506472422668094,
... 0.78505793680521629, 0.78661256633611021]
>>> np.allclose(mean_ring_slope, target_mean_ring_slope)
True
LLCATS: NINF GRAD SURF
calc_slope_at_patch
(grid, elevs='topographic__elevation', ignore_closed_nodes=True, unit_normal=None)[source]¶Calculate the slope (positive magnitude of gradient) at patches.
If ignore_closed_nodes is True, closed nodes do not affect slope calculations. If a closed node is present in a patch, the patch slope is set to zero.
Parameters: | grid : ModelGrid
elevs : str or ndarray, optional
ignore_closed_nodes : bool
unit_normal : array with shape (num_patches, 3) (optional)
|
---|---|
Returns: | slopes_at_patch : n_patches-long array
|
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5))
>>> z = mg.node_x
>>> S = mg.calc_slope_at_patch(elevs=z)
>>> S.size == mg.number_of_patches
True
>>> np.allclose(S, np.pi / 4.)
True
LLCATS: PINF GRAD
calc_unit_normal_at_patch
(grid, elevs='topographic__elevation')[source]¶Calculate and return the unit normal vector <a, b, c> to a patch.
Parameters: | grid : ModelGrid
elevs : str or ndarray, optional
|
---|---|
Returns: | nhat : num-patches x length-3 array
|
Examples
>>> from landlab import HexModelGrid
>>> mg = HexModelGrid(3, 3)
>>> z = mg.node_x * 3. / 4.
>>> mg.calc_unit_normal_at_patch(z)
array([[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8],
[-0.6, 0. , 0.8]])
LLCATS: PINF GRAD
calculate_diff_at_active_links
(*args, **kwargs)[source]¶Calculate differences of node values over active links.
Calculates the difference in quantity node_values at each active link in the grid.
Construction:
calculate_diff_at_active_links(grid, node_values, out=None)
Parameters: | grid : ModelGrid
node_values : ndarray or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
LLCATS: DEPR LINF GRAD |
calculate_diff_at_links
(*args, **kwargs)[source]¶Calculate differences of node values over links.
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((3, 3))
>>> z = np.zeros(9)
>>> z[4] = 1.
>>> grid.calculate_diff_at_links(z)
array([ 0., 0., 0., 1., 0., 1., -1., 0., -1., 0., 0., 0.])
>>> grid.calc_diff_at_link(z)
array([ 0., 0., 0., 1., 0., 1., -1., 0., -1., 0., 0., 0.])
LLCATS: DEPR LINF GRAD
calculate_gradients_at_faces
(*args, **kwargs)[source]¶Calculate gradients of node values over faces.
Calculate and return gradient in node_values at each face in the grid. Gradients are calculated from the nodes at either end of the link that crosses each face.
Construction:
calculate_gradients_at_faces(grid, node_values, out=None)
Parameters: | grid : ModelGrid
node_values : ndarray or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray (x number of faces)
|
Examples
>>> from landlab import RasterModelGrid
>>> rg = RasterModelGrid(3, 4, 10.0)
>>> z = rg.add_zeros('node', 'topographic__elevation')
>>> z[5] = 50.0
>>> z[6] = 36.0
>>> calculate_gradients_at_faces(rg, z) # there are 7 faces
array([ 5. , 3.6, 5. , -1.4, -3.6, -5. , -3.6])
>>> from landlab import HexModelGrid
>>> hg = HexModelGrid(3, 3, 10.0)
>>> z = hg.add_zeros('node', 'topographic__elevation', noclobber=False)
>>> z[4] = 50.0
>>> z[5] = 36.0
>>> calculate_gradients_at_faces(hg, z) # there are 11 faces
array([ 5. , 5. , 3.6, 3.6, 5. , -1.4, -3.6, -5. , -5. , -3.6, -3.6])
LLCATS: DEPR GRAD
calculate_flux_divergence_at_nodes
(grid, active_link_flux, out=None)[source]¶Calculate flux divergence at grid nodes.
Same as calculate_flux_divergence_at_active_cells, but works with and returns a list of net unit fluxes that corresponds to all nodes, rather than just active cells.
Note that we don’t compute net unit fluxes at boundary nodes (which don’t have active cells associated with them, and often don’t have cells of any kind, because they are on the perimeter), but simply return zeros for these entries. The advantage is that the caller can work with node-based arrays instead of active-cell-based arrays.
Parameters: | grid : ModelGrid
active_link_flux : ndarray
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> from landlab import RasterModelGrid
>>> from landlab.grid.grid_funcs import calculate_flux_divergence_at_nodes
>>> grid = RasterModelGrid((4, 5))
>>> link_flux = np.ones(grid.number_of_active_links, dtype=float)
>>> flux_at_node = calculate_flux_divergence_at_nodes(grid, link_flux)
...
>>> flux_at_node
array([ 0., 1., 1., 1., 0.,
1., 0., 0., 0., -1.,
1., 0., 0., 0., -1.,
0., -1., -1., -1., 0.])
>>> flux_at_node[grid.core_nodes]
array([ 0., 0., 0., 0., 0., 0.])
This is deprecated. Instead use ``calc_flux_div_at_node`. Notice that fluxes at non-core nodes are handled differently. However, these boundary nodes don’t have “flux” anyway and so should be ignored.
>>> grid = RasterModelGrid((4, 5))
>>> link_flux = grid.zeros(at='link')
>>> link_flux[grid.active_links] = 1.
>>> flux_at_node = grid.calc_flux_div_at_node(link_flux)
>>> flux_at_node
array([ 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.])
>>> flux_at_node[grid.core_nodes]
array([ 0., 0., 0., 0., 0., 0.])
resolve_values_on_active_links
(grid, active_link_values)[source]¶Resolve active-link values into x and y directions.
Takes a set of values defined on active links, and returns those values resolved into the x and y directions. Two link arrays are returned: x, then y.
Parameters: | grid : ModelGrid
active_link_values : ndarray
|
---|---|
Returns: | tuple of ndarray
|
resolve_values_on_links
(grid, link_values)[source]¶Resolve link values into x and y directions.
Takes a set of values defined on active links, and returns those values resolved into the x and y directions. Two link arrays are returned: x, then y.
Parameters: | grid : ModelGrid
link_values : ndarray
|
---|---|
Returns: | tuple of ndarray
|
Create landlab model grids.
BadGridTypeError
(grid_type)[source]¶Bases: landlab.grid.create.Error
Raise this error for a bad grid type.
create_and_initialize_grid
(input_source)[source]¶Create and initialize a grid from a file.
Creates, initializes, and returns a new grid object using parameters specified in input_source. input_source is either a ModelParameterDictionary instance (or, really, just dict-like) or a named input file.
Parameters: | input_source : str or dict
|
---|---|
Raises: | KeyError
|
Examples
>>> from six import StringIO
>>> test_file = StringIO('''
... GRID_TYPE:
... raster
... NUM_ROWS:
... 4
... NUM_COLS:
... 5
... GRID_SPACING:
... 2.5
... ''')
>>> from landlab import create_and_initialize_grid
>>> grid = create_and_initialize_grid(test_file)
>>> grid.number_of_nodes
20
This module defines decorators used with ModelGrid objects.
override_array_setitem_and_reset (reset) |
Decorator that calls a grid method after setting array values. |
return_id_array (func) |
Decorate a function to return an array of ids. |
return_readonly_id_array (func) |
Decorate a function to return a read-only array of ids. |
override_array_setitem_and_reset
(reset)[source]¶Bases: object
Decorator that calls a grid method after setting array values.
This decorator wraps ModelGrid
methods that return a numpy array
so that it returns a wrapped array that overrides the numpy array
__setitem__, __setslice__, and itemset methods. The wrapped methods
set values in the array but then also call a grid method that resets some
state variables of the grid.
Parameters: | reset : str
|
---|
Inherits from ModelGrid and adds:
A class used to create and manage regular raster grids for 2D numerical models in Landlab.
Do NOT add new documentation here. Grid documentation is now built in a semi- automated fashion. To modify the text seen on the web, edit the files docs/text_for_[gridfile].py.txt.
- class
RasterModelGrid
(*args, **kwds)[source]¶Bases:
landlab.grid.base.ModelGrid
,landlab.grid.raster.RasterModelGridPlotter
A 2D uniform rectilinear grid.
Create a uniform rectilinear grid that has num_rows and num_cols of grid nodes, with a row and column spacing of dx.
Use the bc keyword to specify boundary_conditions along the edge nodes of the grid. bc is a dict whose keys indicate edge location (as “bottom”, “left”, “top”, “right”) and values must be one of “open”, or “closed”. If an edge location key is missing, that edge is assumed to be open.
Parameters: shape : tuple of int
Shape of the grid in nodes.
spacing : float, optional
Row and column node spacing.
bc : dict, optional
Edge boundary conditions.
Notes
The option for NOT giving rows, cols, and dx no longer works, because the field init requires num_active_cells, etc., to be defined. Either we force users to give arguments on instantiation, or set it up such that one can create a zero-node grid.
Examples
Create a uniform rectilinear grid that has 4 rows and 5 columns of nodes. Nodes along the edges will be open. That is, links connecting these nodes to core nodes are active.
>>> from landlab import RasterModelGrid >>> rmg = RasterModelGrid((4, 5), 1.0) >>> rmg.number_of_node_rows, rmg.number_of_node_columns (4, 5) >>> rmg.number_of_active_links 17Set the nodes along the top edge of the grid to be closed boundaries. This means that any links touching these nodes will be inactive.
>>> rmg = RasterModelGrid((4, 5), 1.0, bc={'top': 'closed'}) >>> rmg.number_of_node_rows, rmg.number_of_node_columns (4, 5) >>> rmg.number_of_active_links 14A RasterModelGrid can have different node spacings in the x and y directions.
>>> grid = RasterModelGrid((4, 5), spacing=(1, 2)) >>> grid.dy, grid.dx (1.0, 2.0) >>> grid.node_y array([ 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 2., 2., 2., 2., 2., 3., 3., 3., 3., 3.]) >>> grid.node_x array([ 0., 2., 4., 6., 8., 0., 2., 4., 6., 8., 0., 2., 4., 6., 8., 0., 2., 4., 6., 8.])
are_all_interior
(*args, **kwargs)[source]¶Check if nodes are interior.
Returns a single boolean truth value, True if all nodes with IDs are interior nodes, False if not.
LLCATS: DEPR NINF BC
calc_aspect_at_cell_subtriangles
(grid, elevs='topographic__elevation', subtriangle_unit_normals=None, unit='degrees')¶Get tuple of arrays of aspect of each of the eight cell subtriangles.
Aspect is returned as radians clockwise of north, unless input parameter units is set to ‘degrees’.
If subtriangle_unit_normals is provided the aspect will be calculated from these data.
If it is not, it will be derived from elevation data at the nodes, which can either be a string referring to a grid field (default: ‘topographic__elevation’), or an nnodes-long numpy array of the values themselves.
Parameters: elevs : str or array (optional)
Node field name or node array of elevations. If subtriangle_unit_normals is not provided, must be set, but unused otherwise.
subtriangle_unit_normals : tuple of 8 (ncels, 3) arrays (optional)
The unit normal vectors for the eight subtriangles of each cell, if already known. Order is from north of east, counter clockwise to south of east (East North East, North North East, North North West, West North West, West South West, South South West, South South East, East South East).
unit : {‘degrees’, ‘radians’}
Controls the unit that the aspect is returned as.
Returns: (a_ENE, a_NNE, a_NNW, a_WNW, a_WSW, a_SSW, a_SSE, a_ESE) :
each a length num-cells array
Len-8 tuple of the aspect of each of the eight cell subtriangles. Aspect is returned as angle clockwise of north. Units are given as radians unless input parameter units is set to ‘degrees’. Order is from north of east, counter clockwise to south of east (East North East, North North East, North North West, West North West, West South West, South South West, South South East, East South East).
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((3, 3)) >>> z = np.array([1., 0., 1., 0., 0., 0., 1., 0., 1.]) >>> eight_tris = mg.calc_unit_normals_at_cell_subtriangles(z) >>> A = mg.calc_aspect_at_cell_subtriangles(z, eight_tris) >>> A0 = mg.calc_aspect_at_cell_subtriangles(z) >>> np.allclose(A, A0) True >>> type(A) is tuple True >>> len(A) 8 >>> len(A[0]) == mg.number_of_cells True >>> A0 (array([ 180.]), array([ 270.]), array([ 90.]), array([ 180.]), array([ 0.]), array([ 90.]), array([ 270.]), array([ 0.]))LLCATS: CINF SURF
calc_grad_across_cell_corners
(grid, vals, *args, **kwds)¶Get gradients to diagonally opposite nodes.
Calculate gradient of the value field provided by node_values to the values at diagonally opposite nodes. The returned gradients are ordered as upper-right, upper-left, lower-left and lower-right.
Construction:
grid.calc_grad_across_cell_corners(node_values, [cell_ids], out=None)
Parameters: node_values : array_like or field name
Quantity to take the gradient of defined at each node.
cell_ids : array_like, optional
If provided, cell ids to measure gradients. Otherwise, find gradients for all cells.
out : array_like, optional
Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output.
Returns: (N, 4) ndarray
Gradients to each diagonal node.
Examples
Create a grid with two cells.
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid(3, 4) >>> x = np.array([1., 0., 0., 1., ... 0., 0., 1., 1., ... 3., 3., 3., 3.])A decrease in quantity to a diagonal node is a negative gradient.
>>> from math import sqrt >>> grid.calc_grad_across_cell_corners(x) * sqrt(2.) array([[ 3., 3., 1., 0.], [ 2., 2., -1., 0.]])>>> grid = RasterModelGrid((3, 4), spacing=(3, 4)) >>> grid.calc_grad_across_cell_corners(x) array([[ 0.6, 0.6, 0.2, 0. ], [ 0.4, 0.4, -0.2, 0. ]])LLCATS: CNINF GRAD
calc_grad_across_cell_faces
(grid, vals, *args, **kwds)¶Get gradients across the faces of a cell.
Calculate gradient of the value field provided by node_values across each of the faces of the cells of a grid. The returned gradients are ordered as right, top, left, and bottom.
Note that the returned gradients are masked to exclude neighbor nodes which are closed. Beneath the mask is the value -1.
Construction:
grid.calc_grad_across_cell_faces(node_values, [cell_ids], out=None)
Parameters: node_values : array_like or field name
Quantity to take the gradient of defined at each node.
cell_ids : array_like, optional
If provided, cell ids to measure gradients. Otherwise, find gradients for all cells.
out : array_like, optional
Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output.
Returns: (N, 4) Masked ndarray
Gradients for each face of the cell.
Examples
Create a grid with two cells.
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid(3, 4) >>> x = np.array([0., 0., 0., 0., ... 0., 0., 1., 1., ... 3., 3., 3., 3.])A decrease in quantity across a face is a negative gradient.
>>> grid.calc_grad_across_cell_faces(x) masked_array(data = [[ 1. 3. 0. 0.] [ 0. 2. -1. -1.]], mask = False, fill_value = 1e+20)>>> grid = RasterModelGrid((3, 4), spacing=(2, 1)) >>> grid.calc_grad_across_cell_faces(x) masked_array(data = [[ 1. 1.5 0. 0. ] [ 0. 1. -1. -0.5]], mask = False, fill_value = 1e+20)LLCATS: FINF GRAD
calc_grad_along_node_links
(grid, vals, *args, **kwds)¶Get gradients along links touching a node.
Calculate gradient of the value field provided by node_values across each of the faces of the nodes of a grid. The returned gradients are ordered as right, top, left, and bottom. All returned values follow our standard sign convention, where a link pointing N or E and increasing in value is positive, a link pointing S or W and increasing in value is negative.
Note that the returned gradients are masked to exclude neighbor nodes which are closed. Beneath the mask is the value -1.
Construction:
grid.calc_grad_along_node_links(node_values, [cell_ids], out=None)
Parameters: node_values : array_like or field name
Quantity to take the gradient of defined at each node.
node_ids : array_like, optional
If provided, node ids to measure gradients. Otherwise, find gradients for all nodes.
out : array_like, optional
Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output.
Returns: (N, 4) Masked ndarray
Gradients for each link of the node. Ordering is E,N,W,S.
Examples
Create a grid with nine nodes.
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid(3, 3) >>> x = np.array([0., 0., 0., ... 0., 1., 2., ... 2., 2., 2.])A decrease in quantity across a face is a negative gradient.
>>> grid.calc_grad_along_node_links(x) masked_array(data = [[-- -- -- --] [-- 1.0 -- --] [-- -- -- --] [1.0 -- -- --] [1.0 1.0 1.0 1.0] [-- -- 1.0 --] [-- -- -- --] [-- -- -- 1.0] [-- -- -- --]], mask = [[ True True True True] [ True False True True] [ True True True True] [False True True True] [False False False False] [ True True False True] [ True True True True] [ True True True False] [ True True True True]], fill_value = 1e+20)>>> grid = RasterModelGrid((3, 3), spacing=(2, 4)) >>> grid.calc_grad_along_node_links(x) masked_array(data = [[-- -- -- --] [-- 0.5 -- --] [-- -- -- --] [0.25 -- -- --] [0.25 0.5 0.25 0.5] [-- -- 0.25 --] [-- -- -- --] [-- -- -- 0.5] [-- -- -- --]], mask = [[ True True True True] [ True False True True] [ True True True True] [False True True True] [False False False False] [ True True False True] [ True True True True] [ True True True False] [ True True True True]], fill_value = 1e+20)LLCATS: NINF LINF GRAD
calc_grad_at_active_link
(grid, vals, *args, **kwds)¶Calculate gradients over active links.
Deprecated since version 0.1: Use
calc_grad_across_cell_faces()
orcalc_grad_across_cell_corners()
insteadCalculates the gradient in quantity s at each active link in the grid. This is nearly identical to the method of the same name in ModelGrid, except that it uses a constant node spacing for link length to improve efficiency.
Note that a negative gradient corresponds to a lower node in the direction of the link.
Returns: ndarray
Gradients of the nodes values for each link.
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid(4, 5, 1.0) >>> u = [0., 1., 2., 3., 0., ... 1., 2., 3., 2., 3., ... 0., 1., 2., 1., 2., ... 0., 0., 2., 2., 0.] >>> grad = grid.calc_grad_at_active_link(u) >>> grad array([ 1., 1., -1., 1., 1., -1., 1., -1., -1., -1., 1., 1., -1., 1., -1., 0., 1.])For greater speed, sending a pre-created numpy array as an argument avoids having to create a new one with each call:
>>> grad = np.empty(grid.number_of_active_links) >>> rtn = grid.calc_grad_at_active_link(u, out=grad) >>> grad array([ 1., 1., -1., 1., 1., -1., 1., -1., -1., -1., 1., 1., -1., 1., -1., 0., 1.]) >>> rtn is grad True>>> grid = RasterModelGrid((3, 3), spacing=(1, 2)) >>> node_values = [0., 0., 0., ... 1., 3., 1., ... 2., 2., 2.] >>> grid.calc_grad_at_active_link(node_values) array([ 3., 1., -1., -1.])This function is deprecated. Instead, use
calc_grad_at_link
.>>> grid = RasterModelGrid((3, 3), spacing=(1, 2)) >>> node_values = [0., 0., 0., ... 1., 3., 1., ... 2., 2., 2.] >>> grid.calc_grad_at_link(node_values)[grid.active_links] array([ 3., 1., -1., -1.])LLCATS: LINF GRAD
calc_grad_at_link
(grid, vals, *args, **kwds)¶Calculate gradients in node_values at links.
Construction:
grid.calc_grad_at_link(node_values, out=None)
Parameters: node_values : array_like or field name
Values at nodes.
out : ndarray, optional
Buffer to hold result. If None, create a new array.
Returns: ndarray
Gradients of the nodes values for each link.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 3)) >>> node_values = [0., 0., 0., ... 1., 3., 1., ... 2., 2., 2.] >>> grid.calc_grad_at_link(node_values) array([ 0., 0., 1., 3., 1., 2., -2., 1., -1., 1., 0., 0.])>>> out = np.empty(grid.number_of_links, dtype=float) >>> rtn = grid.calc_grad_at_link(node_values, out=out) >>> rtn is out True >>> out array([ 0., 0., 1., 3., 1., 2., -2., 1., -1., 1., 0., 0.])>>> grid = RasterModelGrid((3, 3), spacing=(1, 2)) >>> grid.calc_grad_at_link(node_values) array([ 0., 0., 1., 3., 1., 1., -1., 1., -1., 1., 0., 0.]) >>> _ = grid.add_field('node', 'elevation', node_values) >>> grid.calc_grad_at_link('elevation') array([ 0., 0., 1., 3., 1., 1., -1., 1., -1., 1., 0., 0.])LLCATS: LINF GRAD
calc_grad_at_patch
(grid, elevs='topographic__elevation', ignore_closed_nodes=True, subtriangle_unit_normals=None, slope_magnitude=None)¶Calculate the components of the gradient of each raster patch.
Returns the mean gradient of the four possible patch subtriangles, in radians.
If ignore_closed_nodes is True, closed nodes do not affect gradient calculations. If more than one closed node is present in a patch, the patch gradients in both x and y directions are set to zero.
Parameters: elevs : str or ndarray, optional
Field name or array of node values.
ignore_closed_nodes : bool
If True, do not incorporate values at closed nodes into the calc.
subtriangle_unit_normals : tuple of 4 (npatches, 3) arrays (optional)
The unit normal vectors for the four subtriangles of each patch, if already known. Order is TR, TL, BL, BR.
slope_magnitude : array with size num_patches (optional)
The mean slope of each patch, if already known. Units must be the same as provided here!
Returns: gradient_tuple : (x_component_at_patch, y_component_at_patch)
Len-2 tuple of arrays giving components of gradient in the x and y directions, in the units of radians.
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5)) >>> z = mg.node_y >>> (x_grad, y_grad) = mg.calc_grad_at_patch(elevs=z) >>> np.allclose(y_grad, np.pi/4.) True >>> np.allclose(x_grad, 0.) True>>> from landlab import CLOSED_BOUNDARY, FIXED_VALUE_BOUNDARY >>> z = mg.node_x.copy() >>> mg.set_closed_boundaries_at_grid_edges(True, True, True, True) >>> mg.status_at_node[11] = CLOSED_BOUNDARY >>> mg.status_at_node[[9, 2]] = FIXED_VALUE_BOUNDARY >>> z[11] = 100. # this should get ignored now >>> z[9] = 2. # this should be felt by patch 7 only >>> z[2] = 1. # should be felt by patches 1 and 2 >>> xgrad, ygrad = mg.calc_grad_at_patch( ... elevs=z, ignore_closed_nodes=True) >>> (xgrad.reshape((3, 4)) * 4./np.pi)[1, 1:] array([ 1., 1., -1.]) >>> np.allclose(ygrad[1:3], xgrad[1:3]) TrueLLCATS: PINF GRAD
calc_slope_at_cell_subtriangles
(grid, elevs='topographic__elevation', subtriangle_unit_normals=None)¶Calculate the slope (positive magnitude of gradient) at each of the eight cell subtriangles.
Parameters: elevs : str or ndarray, optional
Field name or array of node values.
subtriangle_unit_normals : tuple of 8 (ncells, 3) arrays (optional)
The unit normal vectors for the eight subtriangles of each cell, if already known. Order is from north of east, counter clockwise to south of east (East North East, North North East, North North West, West North West, West South West, South South West, South South East, East South East).
Returns: (s_ENE, s_NNE, s_NNW, s_WNW, s_WSW, s_SSW, s_SSE, s_ESE) :
each a length num-cells array Len-8 tuple of the slopes (positive gradient magnitude) of each of the eight cell subtriangles, in radians. Order is from north of east, counter clockwise to south of east (East North East, North North East, North North West, West North West, West South West, South South West, South South East, East South East).
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((3, 3)) >>> z = np.array([np.sqrt(3.), 0., 4./3., ... 0., 0., 0., ... 1., 0., 1./np.sqrt(3.)]) >>> eight_tris = mg.calc_unit_normals_at_cell_subtriangles(z) >>> S = mg.calc_slope_at_cell_subtriangles(z, eight_tris) >>> S0 = mg.calc_slope_at_cell_subtriangles(z) >>> np.allclose(S, S0) True >>> type(S) is tuple True >>> len(S) 8 >>> len(S[0]) == mg.number_of_cells True >>> np.allclose(S[0], S[1]) True >>> np.allclose(S[2], S[3]) True >>> np.allclose(S[4], S[5]) True >>> np.allclose(S[6], S[7]) True >>> np.allclose(np.rad2deg(S[0])[0], 30.) True >>> np.allclose(np.rad2deg(S[2])[0], 45.) True >>> np.allclose(np.rad2deg(S[4])[0], 60.) True >>> np.allclose(np.cos(S[6])[0], 3./5.) TrueLLCATS: CINF GRAD
calc_slope_at_node
(grid, elevs='topographic__elevation', method='patch_mean', ignore_closed_nodes=True, return_components=False)¶Array of slopes at nodes, averaged over neighboring patches.
Produces a value for node slope (i.e., mean gradient magnitude) at each node in a manner analogous to a GIS-style slope map. If method==’patch_mean’, it averages the gradient on each of the patches surrounding the node; if method==’Horn’, it returns the resolved slope direction. Directional information can still be returned through use of the return_components keyword. All values are returned in radians, including the components; take the tan to recover the rise/run.
Note that under these definitions, it is not always true that:
mag, cmp = mg.calc_slope_at_node(z) mag**2 == cmp[0]**2 + cmp[1]**2 # only if method=='Horn'If ignore_closed_nodes is False, all proximal elevation values will be used in the calculation. If True, only unclosed nodes are used.
This is a verion of this code specialized for a raster. It subdivides the four square patches around each node into subtriangles, in order to ensure more correct solutions that incorporate equally weighted information from all surrounding nodes on rough surfaces.
Parameters: elevs : str or ndarray, optional
Field name or array of node values.
method : {‘patch_mean’, ‘Horn’}
Controls the slope algorithm. Current options are ‘patch_mean’, which takes the mean slope of each pf the four neighboring square patches, and ‘Horn’, which is the standard ArcGIS slope algorithm. These produce very similar solutions; the Horn method gives a vector mean and the patch_mean gives a scalar mean.
ignore_closed_nodes : bool
If True, do not incorporate values at closed nodes into the calc.
return_components : bool
If True, return a tuple, (array_of_magnitude, (array_of_slope_x_radians, array_of_slope_y_radians)). If false, return an array of floats of the slope magnitude.
Returns: float array or length-2 tuple of float arrays
If return_components, returns (array_of_magnitude, (array_of_slope_x_radians, array_of_slope_y_radians)). If not return_components, returns an array of slope magnitudes.
Examples
>>> import numpy as np >>> from landlab import RadialModelGrid, RasterModelGrid >>> mg = RasterModelGrid((5, 5), 1.) >>> z = mg.node_x >>> slopes = mg.calc_slope_at_node(elevs=z) >>> np.allclose(slopes, np.pi / 4.) True >>> mg = RasterModelGrid((4, 5), 2.) >>> z = - mg.node_y >>> slope_mag, cmp = mg.calc_slope_at_node(elevs=z, ... return_components=True) >>> np.allclose(slope_mag, np.pi / 4.) True >>> np.allclose(cmp[0], 0.) True >>> np.allclose(cmp[1], - np.pi / 4.) True >>> mg = RasterModelGrid((4, 4)) >>> z = mg.node_x ** 2 + mg.node_y ** 2 >>> slopes, cmp = mg.calc_slope_at_node(z, return_components=True) >>> slopes array([ 0.95531662, 1.10991779, 1.32082849, 1.37713803, 1.10991779, 1.20591837, 1.3454815 , 1.38904403, 1.32082849, 1.3454815 , 1.39288142, 1.41562833, 1.37713803, 1.38904403, 1.41562833, 1.43030663]) >>> np.allclose(cmp[0].reshape((4, 4))[:, 0], ... cmp[1].reshape((4, 4))[0, :]) # test radial symmetry TrueLLCATS: NINF GRAD SURF
calc_slope_at_patch
(grid, elevs='topographic__elevation', ignore_closed_nodes=True, subtriangle_unit_normals=None)¶Calculate the slope (positive magnitude of gradient) at raster patches.
Returns the mean of the slopes of the four possible patch subtriangles.
If ignore_closed_nodes is True, closed nodes do not affect slope calculations. If more than one closed node is present in a patch, the patch slope is set to zero.
Parameters: elevs : str or ndarray, optional
Field name or array of node values.
ignore_closed_nodes : bool
If True, do not incorporate values at closed nodes into the calc.
subtriangle_unit_normals : tuple of 4 (npatches, 3) arrays (optional)
The unit normal vectors for the four subtriangles of each patch, if already known. Order is TR, TL, BL, BR.
Returns: slopes_at_patch : n_patches-long array
The slope (positive gradient magnitude) of each patch, in radians.
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5)) >>> z = mg.node_x >>> S = mg.calc_slope_at_patch(elevs=z) >>> S.size == mg.number_of_patches True >>> np.allclose(S, np.pi/4.) True >>> z = mg.node_y**2 >>> mg.calc_slope_at_patch(elevs=z).reshape((3, 4)) array([[ 0.78539816, 0.78539816, 0.78539816, 0.78539816], [ 1.24904577, 1.24904577, 1.24904577, 1.24904577], [ 1.37340077, 1.37340077, 1.37340077, 1.37340077]])>>> from landlab import CLOSED_BOUNDARY, FIXED_VALUE_BOUNDARY >>> z = mg.node_x.copy() >>> mg.set_closed_boundaries_at_grid_edges(True, True, True, True) >>> mg.status_at_node[11] = CLOSED_BOUNDARY >>> mg.status_at_node[9] = FIXED_VALUE_BOUNDARY >>> z[11] = 100. # this should get ignored now >>> z[9] = 2. # this should be felt by patch 7 only >>> mg.calc_slope_at_patch(elevs=z, ignore_closed_nodes=True).reshape( ... (3, 4)) * 4./np.pi array([[ 0., 0., 0., 0.], [ 0., 1., 1., 1.], [ 0., 0., 0., 0.]])LLCATS: PINF GRAD
calc_unit_normal_at_patch
(elevs='topographic__elevation')[source]¶Calculate and return the unit normal vector <a, b, c> to a patch.
This method is not defined on a raster, as there is no unique unit normal for a square patch. Use _calc_unit_normals_to_patch_subtriangles instead.
LLCATS: PINF GRAD
calc_unit_normals_at_cell_subtriangles
(grid, elevs='topographic__elevation')¶Calculate unit normals on a cell.
Calculate the eight unit normal vectors <a, b, c> to the eight subtriangles of a four-cornered (raster) cell.
Parameters: elevs : str or ndarray, optional
Field name or array of node values.
Returns: (n_ENE, n_NNE, n_NNW, n_WNW, n_WSW, n_SSW, n_SSE, n_ESE) :
each a num-cells x length-3 array Len-8 tuple of the eight unit normal vectors <a, b, c> for the eight subtriangles in the cell. Order is from north of east, counter clockwise to south of east (East North East, North North East, North North West, West North West, West South West, South South West, South South East, East South East).
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((3, 3)) >>> z = mg.node_x ** 2 >>> eight_tris = mg.calc_unit_normals_at_cell_subtriangles(z) >>> type(eight_tris) is tuple True >>> len(eight_tris) 8 >>> eight_tris[0].shape == (mg.number_of_cells, 3) True >>> eight_tris (array([[-0.9486833 , 0. , 0.31622777]]), array([[-0.9486833 , 0. , 0.31622777]]), array([[-0.70710678, 0. , 0.70710678]]), array([[-0.70710678, 0. , 0.70710678]]), array([[-0.70710678, 0. , 0.70710678]]), array([[-0.70710678, 0. , 0.70710678]]), array([[-0.9486833 , 0. , 0.31622777]]), array([[-0.9486833 , 0. , 0.31622777]]))LLCATS: CINF GRAD
calc_unit_normals_at_patch_subtriangles
(grid, elevs='topographic__elevation')¶Calculate unit normals on a patch.
Calculate the four unit normal vectors <a, b, c> to the four possible subtriangles of a four-cornered (raster) patch.
Parameters: elevs : str or ndarray, optional
Field name or array of node values.
Returns: (n_TR, n_TL, n_BL, n_BR) : each a num-patches x length-3 array
Len-4 tuple of the four unit normal vectors <a, b, c> for the four possible subtriangles in the patch. Order is (topright, topleft, bottomleft, bottomright).
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5)) >>> z = mg.node_x ** 2 >>> four_tris = mg.calc_unit_normals_at_patch_subtriangles(z) >>> type(four_tris) is tuple True >>> len(four_tris) 4 >>> np.allclose(four_tris[0], four_tris[1]) True >>> np.allclose(four_tris[2], four_tris[3]) True >>> np.allclose(four_tris[0], four_tris[2]) True >>> np.allclose(np.square(four_tris[0]).sum(axis=1), 1.) True >>> four_tris[0] array([[-0.70710678, 0. , 0.70710678], [-0.9486833 , 0. , 0.31622777], [-0.98058068, 0. , 0.19611614], [-0.98994949, 0. , 0.14142136], [-0.70710678, 0. , 0.70710678], [-0.9486833 , 0. , 0.31622777], [-0.98058068, 0. , 0.19611614], [-0.98994949, 0. , 0.14142136], [-0.70710678, 0. , 0.70710678], [-0.9486833 , 0. , 0.31622777], [-0.98058068, 0. , 0.19611614], [-0.98994949, 0. , 0.14142136]])LLCATS: PINF GRAD
calculate_aspect_at_nodes_bestFitPlane
(*args, **kwargs)[source]¶Aspect at nodes.
Note
This method is deprecated as of Landlab version 1.0.
Use
calc_aspect_at_node()
instead.Code author: Katy Barnhart <katherine.barnhart@colorado.edu>
Calculates the aspect at each node based on the elevation of the node and its neighbors using a best fit plane calculated using single value decomposition.
Parameters: id : array-like
ID of nodes at which to calculate the aspect.
val : ndarray
Elevation at all nodes
Returns: ndarray
Aspect at the nodes given by id
LLCATS: DEPR NINF SURF
calculate_flux_divergence
(*args, **kwargs)[source]¶Flux divergence.
Note
This method is deprecated as of Landlab version 1.0.
Use
calc_flux_div_at_node()
instead.Candidate for depreciation, DEJH 5/14
Todo
UPDATE THIS TO USE NEW DATA STRUCTURES!
This is like calculate_flux_divergences (plural!), but only does it for cell “id”.
LLCATS: DEPR NINF GRAD
calculate_flux_divergence_at_nodes
(*args, **kwargs)[source]¶Flux divergence at nodes.
Note
This method is deprecated as of Landlab version 1.0.
Use
calc_flux_div_at_node()
instead.Same as calculate_flux_divergence_at_active_cells, but works with and returns a list of net unit fluxes that corresponds to all nodes, rather than just active cells.
Note that we DO compute net unit fluxes at boundary nodes (even though these don’t have active cells associated with them, and often don’t have cells of any kind, because they are on the perimeter). It’s up to the user to decide what to do with these boundary values.
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> rmg = RasterModelGrid((4, 5), 1.0) >>> u = [0., 1., 2., 3., 0., ... 1., 2., 3., 2., 3., ... 0., 1., 2., 1., 2., ... 0., 0., 2., 2., 0.] >>> u = np.array(u) >>> grad = rmg.calc_grad_at_link(u)[rmg.active_links] >>> grad array([ 1., 1., -1., 1., 1., -1., 1., -1., -1., -1., 1., 1., -1., 1., -1., 0., 1.]) >>> flux = -grad # downhill flux proportional to gradient >>> df = rmg.calculate_flux_divergence_at_nodes(flux) >>> df array([ 0., -1., -1., 1., 0., -1., 2., 4., -2., 1., -1., 0., 1., -4., 1., 0., -1., 0., 1., 0.])If calculate_gradients_at_nodes is called inside a loop, you can improve speed by creating an array outside the loop. For example, do this once, before the loop:
>>> df = rmg.zeros(centering='node') # outside loop >>> rmg.number_of_nodes 20Then do this inside the loop:
>>> df = rmg.calculate_flux_divergence_at_nodes(flux, df)In this case, the function will not have to create the df array.
LLCATS: DEPR NINF GRAD
calculate_slope_aspect_at_nodes_best_fit_plane
(*args, **kwargs)[source]¶Calculate slope aspect.
Note
This method is deprecated as of Landlab version 1.0.
Use
calc_slope_at_node, calc_aspect_at_node()
instead.Slope aspect of best-fit plane at nodes.
Code author: Katy Barnhart <katherine.barnhart@colorado.edu>
Note
THIS CODE HAS ISSUES (SN 25-Sept-14): This code didn’t perform well on a NS facing elevation profile. Please check slope_aspect_routines_comparison.py under landlabexamples before using this. Suggested alternative: calculate_slope_aspect_at_nodes_burrough
Calculates both the slope and aspect at each node based on the elevation of the node and its neighbors using a best fit plane calculated using single value decomposition.
Parameters: nodes : array-like
ID of nodes at which to calculate the aspect
val : ndarray
Elevation at all nodes
Returns: (slope, aspect) : tuple of floats
Tuple containing (slope, aspect)
LLCATS: DEPR NINF GRAD SURF
calculate_slope_aspect_at_nodes_burrough
(*args, **kwargs)[source]¶Calculate topographic slope.
Note
This method is deprecated as of Landlab version 1.0.
Use
calc_slope_at_node, calc_aspect_at_node()
instead.Calculates the local topographic slope (i.e., the down-dip slope, and presented as positive), and the aspect (dip direction in degrees clockwise from north), at the given nodes, ids. All ids must be of core nodes. This method uses Burrough’s 1998 Pg. 190 method similar to the methods used by ArcMap to calculate slope and aspect.
If ids is not provided, the slope will be returned for nodes at all cells.
vals is either the name of an existing grid field from which to draw topographic data, or an array of values to use. If an array of values is passed, it must be nnodes long. If vals is not provided, this method will default to trying to use the field ‘Elevation’.
Returns: (slope, aspect) : tuple of float
slope, a len(ids) array of slopes at each node provided. aspect, a len(ids) array of aspects at each node provided.
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4), (4, 4)) >>> z = np.array([0., 0., 0., 0., ... 3., 3., 3., 3, ... 6., 6., 6., 6.]) >>> (slope, ... aspect) = grid.calculate_slope_aspect_at_nodes_burrough(vals=z) >>> np.tan(slope) array([ 0.75, 0.75]) >>> np.degrees(aspect) array([ 180., 180.])This method is deprecated. Use
calc_slope_at_node
andcalc_aspect_at_node
instead. Notice thatcalc_slope_at_node
andcalc_aspect_at_node
return values for all nodes, not just core nodes. In addition,calc_aspect_at_node
returns compass-style angles in degrees.>>> np.tan(grid.calc_slope_at_node(elevs=z)[grid.core_nodes]) array([ 0.75, 0.75]) >>> grid.calc_aspect_at_node(elevs=z)[grid.core_nodes] array([ 180., 180.])LLCATS: DEPR NINF SURF GRAD
calculate_slope_at_nodes_bestFitPlane
(*args, **kwargs)[source]¶Slope of best-fit plane at nodes.
Code author: Katy Barnhart <katherine.barnhart@colorado.edu>
Calculates the slope at each node based on the elevation of the node and its neighbors using a best fit plane calculated using single value decomposition.
Parameters: id : array-like
ID of nodes at which to calculate the aspect
val : ndarray
Elevation at all nodes
Returns: ndarray
Slope at the nodes given by id
LLCATS: DEPR NINF GRAD SURF
cell_grid_shape
¶Get the shape of the cellular grid (grid with only cells).
Returns: shape : tuple of ints
The shape of the cellular grid as number of cell rows and cell columns.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4)) >>> grid.cell_grid_shape (1, 2)LLCATS: GINF CINF
cell_vector_to_raster
(u, flip_vertically=False)[source]¶Unravel a 1D array.
Converts cell vector u to a 2D array and returns it, so that it can be plotted, output, etc.
If the optional argument flip_vertically=True, the function returns an array that has the rows in reverse order, for use in plot commands (such as the image display functions) that put the (0,0) axis at the top left instead of the bottom left.
LLCATS: GINF CINF
cells_at_corners_of_grid
¶Get array of cells in cellular grid (grid with only cells) corners.
Return the IDs to the corner cells of the cellular grid, sorted by ID.
Returns: (4, ) ndarray
Array of corner node IDs.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.cells_at_corners_of_grid array([0, 2, 3, 5])LLCATS: GINF CINF SUBSET
corner_cells
¶LLCATS: DEPR GINF CINF SUBSET
corner_nodes
¶LLCATS: DEPR GINF NINF SUBSET
dx
¶Get node spacing in the column direction.
Returns: float
Spacing of node columns.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.dx 1.0 >>> grid = RasterModelGrid((4, 5), 2.0) >>> grid.dx 2.0LLCATS: GINF MEAS
dy
¶Get node spacing in the row direction.
Note in a RasterModelGrid, dy==dx.
Returns: float
Spacing of node rows.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.dy 1.0 >>> grid = RasterModelGrid((4, 5), spacing=(2, 4)) >>> grid.dy 2.0LLCATS: GINF MEAS
extent
¶Extent of the grid in the y and x-dimensions.
Return the y and x-dimension of the grid. Because boundary nodes don’t have cells, the dimension of the grid is
((num_rows - 1) * dy, (num_columns - 1) * dx)
, not(num_rows * dy, num_cols * dx)
.
Returns: (y_extent, x_extent) : tuple of float
Length of the grid in the y and x-dimensions.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.extent (3.0, 4.0)>>> grid = RasterModelGrid((4, 5), 2.) >>> grid.extent (6.0, 8.0)>>> grid = RasterModelGrid((4, 5), spacing=(2, 3)) >>> grid.extent (6.0, 12.0)LLCATS: GINF MEAS
face_connecting_cell_pair
(*args, **kwargs)[source]¶Get the face that connects two cells.
Note
This method is deprecated as of Landlab version 1.0.
Use
no replacement()
instead.Returns an array of face indices that cell_a and cell_b share. If the cells do not share any faces, returns an empty array.
Examples
>>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5)) >>> mg.face_connecting_cell_pair(0, 1) array([4]) >>> mg.face_connecting_cell_pair(0, 2).size # empty array returned 0LLCATS: DEPR FINF CINF CONN
find_nearest_node
(coords, mode='raise')[source]¶Node nearest a point.
Find the index to the node nearest the given x, y coordinates. Coordinates are provided as numpy arrays in the coords tuple.
Use the mode keyword to specify what to do if the given coordinates are out-of-bounds. See
np.ravel_multi_index()
for a description of possible values for mode. Note that a coordinate is out-of-bounds if it is beyond one half the node spacing from the exterior nodes.Returns the indices of the nodes nearest the given coordinates.
Parameters: coords : tuple of array-like
Coordinates of points.
mode : {‘raise’, ‘wrap’, ‘clip’}, optional
What to do if a point is off the grid.
Returns: array-like
IDs of the nearest nodes.
Notes
For coordinates that are equidistant to two or more nodes, see the rounding rules for
numpy.around()
.Examples
>>> from landlab import RasterModelGrid >>> rmg = RasterModelGrid((4, 5)) >>> rmg.find_nearest_node([0.2, 0.2]) 0 >>> rmg.find_nearest_node((np.array([1.6, 3.6]), np.array([2.3, .7]))) array([12, 9]) >>> rmg.find_nearest_node((-.4999, 1.)) 5LLCATS: NINF SUBSET
- classmethod
from_dict
(params)[source]¶Create a RasterModelGrid from a dictionary.
Parameters: params : dict_like
Initialization parameters for a RasterModelGrid.
Returns: RasterModelGrid
A newly-created grid.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid.from_dict( ... {'shape': (3, 4), 'bc': {'top': 'closed'}}) >>> grid.number_of_nodes 12LLCATS: GINF
grid_coords_to_node_id
(*args, **kwds)[source]¶Convert node indices to node ID.
Returns the ID of the node at the specified row and col of the raster grid. Since this is a wrapper for the numpy ravel_multi_index function, the keyword arguments are the same as that function. In addition, row and col can both be either scalars or arrays (of the same length) to get multiple ids.
As with ravel_multi_index use the mode keyword to change the behavior of the method when passed an out-of-range row or col. The default is to raise ValueError (not IndexError, as you might expect).
Note
The syntax assumes that first row and column are 0, so max entry for a mg with 4 rows and 5 cols is row=3, col=4
Parameters: row : array-like
Row of node.
col : array-like
Column of node.
Returns: ndarray
Node IDs.
Examples
>>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5)) >>> mg.grid_coords_to_node_id(2, 3) 13>>> mg.grid_coords_to_node_id([2, 0], [3, 4]) array([13, 4])LLCATS: NINF SUBSET MEAS
grid_xdimension
¶Length of the grid in the x-dimension.
Return the x-dimension of the grid. Because boundary nodes don’t have cells, the dimension of the grid is num_cols-1, not num_cols.
Returns: float
Length of the grid in the x-dimension.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.grid_xdimension 4.0>>> grid = RasterModelGrid((4, 5), 0.5) >>> grid.grid_xdimension 2.0>>> grid = RasterModelGrid((4, 5), spacing=(2, 3)) >>> grid.grid_xdimension 12.0LLCATS: GINF MEAS
grid_ydimension
¶Length of the grid in the y-dimension.
Return the y-dimension of the grid. Because boundary nodes don’t have cells, the dimension of the grid is num_rows-1, not num_rows.
Returns: float
Length of the grid in the y-dimension.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.grid_ydimension 3.0>>> grid = RasterModelGrid((4, 5), 0.5) >>> grid.grid_ydimension 1.5>>> grid = RasterModelGrid((4, 5), spacing=(2, 3)) >>> grid.grid_ydimension 6.0LLCATS: GINF MEAS
horizontal_links
¶LLCATS: LINF
is_interior
([ids])[source]¶Check of a node is an interior node.
Returns an boolean array of truth values for each node ID provided; True if the node is an interior node, False otherwise. If no IDs are provided, method returns a boolean array for every node.
(Interior status is typically indicated by a value of 0 in node_status.)
LLCATS: DEPR NINF BC
is_point_on_grid
(xcoord, ycoord)[source]¶Check if a point is on the grid.
This method takes x, y coordinates and tests whether they lie within the grid. The limits of the grid are taken to be links connecting the boundary nodes. We perform a special test to detect looped boundaries.
Coordinates can be ints or arrays of ints. If arrays, will return an array of the same length of boolean truth values.
Parameters: xcoord : float or array_like
The point’s x-coordinate.
ycoord : float or array_like
The point’s y-coordinate.
Returns: bool
True
if the point is on the grid. Otherwise,False
.Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5), spacing=(2, 1)) >>> grid.is_point_on_grid(1, 1) True >>> grid.is_point_on_grid((1, 1, 1,), (1, 3.1, 6.1)) array([ True, True, False], dtype=bool) >>> grid.is_point_on_grid((-.1, .1, 3.9, 4.1), (1, 1, 1, 1)) array([False, True, True, False], dtype=bool)LLCATS: GINF MEAS SUBSET
length_of_link
¶Get lengths of links.
Return the link lengths in the grid, as a nlinks-long array.
Returns: (4, N) ndarray
Link lengths.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 3), spacing=(3, 4)) >>> grid.length_of_link array([ 4., 4., 3., 3., 3., 4., 4., 3., 3., 3., 4., 4.])Since LL version 1, this method is unaffected by the existance or otherwise of diagonal links on the grid:
>>> grid = RasterModelGrid((3, 3), spacing=(4, 3)) >>> _ = grid._diagonal_links_at_node >>> grid.length_of_link array([ 3., 3., 4., 4., 4., 3., 3., 4., 4., 4., 3., 3.])LLCATS: LINF MEAS
links_at_patch
¶Get array of links defining each patch.
Examples
>>> mg = RasterModelGrid((3, 4)) >>> mg.links_at_patch array([[ 4, 7, 3, 0], [ 5, 8, 4, 1], [ 6, 9, 5, 2], [11, 14, 10, 7], [12, 15, 11, 8], [13, 16, 12, 9]])LLCATS: PINF LINF CONN
looped_neighbors_at_cell
¶For each cell in a raster, return the D8 neighboring cells, looping across grid boundaries as necessary.
Returns lists of looped neighbor cell IDs of given cell ids. If cell ids are not given, it returns a 2D array of size (self.number_of_cells, 8). Order or neighbors is [ E, NE, N, NW, W, SW, S, SE ]
Output is looped, regardless of boundary conditions! (see examples)
Returns: ndarray (num_cells, 8)
The eight neighbors of each cell.
LLCATS: DEPR CINF CONN BC
map_max_of_inlinks_to_node
(grid, var_name, out=None)¶Map the maximum of links entering a node to the node.
map_max_of_inlinks_to_node takes an array at the links and finds the inlink values for each node in the grid. it finds the maximum value at the the inlinks and returns values at the nodes.
Note
This considers all inactive links to have a value of 0.
Construction:
grid.map_max_of_inlinks_to_node(var_name, out=None)
Parameters: var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or None to create a new array.
Returns: ndarray
Mapped values at nodes.
Examples
>>> import numpy as np >>> from landlab.grid.raster_mappers import map_max_of_inlinks_to_node >>> from landlab import RasterModelGrid>>> rmg = RasterModelGrid((3, 4)) >>> _ = rmg.add_field('link', 'z', np.arange(17.)) >>> map_max_of_inlinks_to_node(rmg, 'z') array([ 0., 0., 1., 2., 3., 7., 8., 9., 10., 14., 15., 16.])LLCATS: NINF LINF MAP
map_max_of_outlinks_to_node
(grid, var_name, out=None)¶Map the max of links leaving a node to the node.
map_max_of_outlinks_to_node takes an array at the links and finds the outlink values for each node in the grid. it finds the maximum value at the the outlinks and returns values at the nodes.
Note
This considers all inactive links to have a value of 0.
Construction:
grid.map_max_of_outlinks_to_node(var_name, out=None)
Parameters: var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or None to create a new array.
Returns: ndarray
Mapped values at nodes.
Examples
>>> import numpy as np >>> from landlab.grid.raster_mappers import map_max_of_outlinks_to_node >>> from landlab import RasterModelGrid>>> rmg = RasterModelGrid((3, 4)) >>> _ = rmg.add_field('link', 'z', np.arange(17.)) >>> map_max_of_outlinks_to_node(rmg, 'z') array([ 3., 4., 5., 6., 10., 11., 12., 13., 14., 15., 16., 0.])LLCATS: NINF LINF MAP
map_mean_of_horizontal_active_links_to_node
(grid, var_name, out=None)¶Map the mean of active links in the x direction touching node to the node.
map_mean_of_horizontal_active_links_to_node takes an array at the links and finds the average of all horizontal (x-direction) link neighbor values for each node in the grid. It returns an array at the nodes of the mean of these values. If a link is absent, it is ignored. If a node has no active links, it receives 0. Note that here a positive returned value means flux to the east, and a negative to the west.
Parameters: var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or None to create a new array.
Returns: ndarray
Mapped values at nodes.
Examples
>>> import numpy as np >>> from landlab.grid.raster_mappers import map_mean_of_horizontal_active_links_to_node >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY>>> rmg = RasterModelGrid((3, 4)) >>> _ = rmg.add_field('link', 'z', -np.arange(17, dtype=float)) >>> rmg.status_at_node[rmg.nodes_at_left_edge] = CLOSED_BOUNDARY >>> map_mean_of_horizontal_active_links_to_node(rmg, 'z') array([ 0. , 0. , 0. , 0. , 0. , -8. , -8.5, -9. , 0. , 0. , 0. , 0. ])LLCATS: NINF LINF MAP
map_mean_of_horizontal_links_to_node
(grid, var_name, out=None)¶Map the mean of links in the x direction touching a node to the node.
map_mean_of_horizontal_links_to_node takes an array at the links and finds the average of all horizontal (x-direction) link neighbor values for each node in the grid. It returns an array at the nodes of the mean of these values. If a link is absent, it is ignored. Note that here a positive returned value means flux to the east, and a negative to the west.
Parameters: var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or None to create a new array.
Returns: ndarray
Mapped values at nodes.
Examples
>>> import numpy as np >>> from landlab.grid.raster_mappers import map_mean_of_horizontal_links_to_node >>> from landlab import RasterModelGrid>>> rmg = RasterModelGrid((3, 4)) >>> _ = rmg.add_field('link', 'z', np.arange(17.)) >>> map_mean_of_horizontal_links_to_node(rmg, 'z') array([ 0. , 0.5, 1.5, 2. , 7. , 7.5, 8.5, 9. , 14. , 14.5, 15.5, 16. ])LLCATS: NINF LINF MAP
map_mean_of_inlinks_to_node
(grid, var_name, out=None)¶Map the mean of links entering a node to the node.
map_mean_of_inlinks_to_node takes an array at the links and finds the inlink values for each node in the grid. It finds the average of the inlinks and returns values at the nodes.
This considers all inactive links to have a value of 0.
Construction:
grid.map_mean_of_inlinks_to_node(var_name, out=None)
Parameters: var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or None to create a new array.
Returns: ndarray
Mapped values at nodes.
Examples
>>> import numpy as np >>> from landlab.grid.raster_mappers import map_mean_of_inlinks_to_node >>> from landlab import RasterModelGrid>>> rmg = RasterModelGrid((3, 4)) >>> _ = rmg.add_field('link', 'z', np.arange(17.)) >>> map_mean_of_inlinks_to_node(rmg, 'z') array([ 0. , 0. , 0.5, 1. , 1.5, 5.5, 6.5, 7.5, 5. , 12.5, 13.5, 14.5])LLCATS: NINF LINF MAP
map_mean_of_links_to_node
(grid, var_name, out=None)¶Map the mean of links touching a node to the node.
map_mean_all_links_to_node takes an array at the links and finds the average of all ~existing~ link neighbor values for each node in the grid. it returns values at the nodes.
Note
This considers all inactive links to have a value of 0.
Construction:
grid.map_mean_of_links_to_node(var_name, out=None)
Parameters: var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or None to create a new array.
Returns: ndarray
Mapped values at nodes.
Examples
>>> import numpy as np >>> from landlab.grid.raster_mappers import map_mean_of_links_to_node >>> from landlab import RasterModelGrid>>> rmg = RasterModelGrid((3, 4)) >>> _ = rmg.add_field('link', 'z', np.arange(17.)) >>> map_mean_of_links_to_node(rmg, 'z') array([ 1.5 , 1.66666667, 2.66666667, 4. , 6.66666667, 7.5 , 8.5 , 9.33333333, 12. , 13.33333333, 14.33333333, 14.5 ])LLCATS: NINF LINF MAP
map_mean_of_outlinks_to_node
(grid, var_name, out=None)¶Map the mean of links leaving a node to the node.
map_mean_of_outlinks_to_node takes an array at the links and finds the outlink values for each node in the grid. it finds the average of the outlinks and returns values at the nodes.
Note
This considers all inactive links to have a value of 0.
Construction:
grid.map_mean_of_outlinks_to_node(var_name, out=None)
Parameters: var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or None to create a new array.
Returns: ndarray
Mapped values at nodes.
Examples
>>> import numpy as np >>> from landlab.grid.raster_mappers import map_mean_of_outlinks_to_node >>> from landlab import RasterModelGrid>>> rmg = RasterModelGrid((3, 4)) >>> _ = rmg.add_field('link', 'z', np.arange(17.)) >>> map_mean_of_outlinks_to_node(rmg, 'z') array([ 1.5, 2.5, 3.5, 3. , 8.5, 9.5, 10.5, 6.5, 7. , 7.5, 8. , 0. ])LLCATS: NINF LINF MAP
map_mean_of_vertical_active_links_to_node
(grid, var_name, out=None)¶Map the mean of active links in the y direction touching node to the node.
map_mean_of_vertical_active_links_to_node takes an array at the links and finds the average of all vertical (y-direction) link neighbor values for each node in the grid. It returns an array at the nodes of the mean of these values. If a link is absent, it is ignored. If a node has no active links, it receives 0. Note that here a positive returned value means flux to the north, and a negative to the south.
Parameters: var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or None to create a new array.
Returns: ndarray
Mapped values at nodes.
Examples
>>> import numpy as np >>> from landlab.grid.raster_mappers import map_mean_of_vertical_active_links_to_node >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY>>> rmg = RasterModelGrid((3, 4)) >>> _ = rmg.add_field('link', 'z', -np.arange(17, dtype=float)) >>> rmg.status_at_node[rmg.nodes_at_bottom_edge] = CLOSED_BOUNDARY >>> map_mean_of_vertical_active_links_to_node(rmg, 'z') array([ 0., 0., 0., 0., 0., -11., -12., 0., 0., -11., -12., 0.])LLCATS: NINF LINF MAP
map_mean_of_vertical_links_to_node
(grid, var_name, out=None)¶Map the mean of links in the y direction touching a node to the node.
map_mean_of_vertical_links_to_node takes an array at the links and finds the average of all vertical (y-direction) link neighbor values for each node in the grid. It returns an array at the nodes of the mean of these values. If a link is absent, it is ignored. Note that here a positive returned value means flux to the north, and a negative to the south.
Parameters: var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or None to create a new array.
Returns: ndarray
Mapped values at nodes.
Examples
>>> import numpy as np >>> from landlab.grid.raster_mappers import map_mean_of_vertical_links_to_node >>> from landlab import RasterModelGrid>>> rmg = RasterModelGrid((3, 4)) >>> _ = rmg.add_field('link', 'z', np.arange(17.)) >>> map_mean_of_vertical_links_to_node(rmg, 'z') array([ 3. , 4. , 5. , 6. , 6.5, 7.5, 8.5, 9.5, 10. , 11. , 12. , 13. ])LLCATS: NINF LINF MAP
map_min_of_inlinks_to_node
(grid, var_name, out=None)¶Map the minimum of links entering a node to the node.
map_min_of_inlinks_to_node takes an array at the links and finds the inlink values for each node in the grid. it finds the minimum value at the the inlinks and returns values at the nodes.
Note
This considers all inactive links to have a value of 0.
Construction:
grid.map_min_of_inlinks_to_node(var_name, out=None)
Parameters: var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or None to create a new array.
Returns: ndarray
Mapped values at nodes.
Examples
>>> import numpy as np >>> from landlab.grid.raster_mappers import map_min_of_inlinks_to_node >>> from landlab import RasterModelGrid>>> rmg = RasterModelGrid((3, 4)) >>> _ = rmg.add_field('link', 'z', np.arange(17.)) >>> map_min_of_inlinks_to_node(rmg, 'z') array([ 0., 0., 0., 0., 0., 4., 5., 6., 0., 11., 12., 13.])LLCATS: NINF LINF MAP
map_min_of_outlinks_to_node
(grid, var_name, out=None)¶Map the min of links leaving a node to the node.
map_min_of_outlinks_to_node takes an array at the links and finds the outlink values for each node in the grid. It finds the minimum value at the the outlinks and returns values at the nodes.
Note
This considers all inactive links to have a value of 0.
Construction:
grid.map_min_of_outlinks_to_node(var_name, out=None)
Parameters: var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or None to create a new array.
Returns: ndarray
Mapped values at nodes.
Examples
>>> import numpy as np >>> from landlab.grid.raster_mappers import map_min_of_outlinks_to_node >>> from landlab import RasterModelGrid>>> rmg = RasterModelGrid((3, 4)) >>> _ = rmg.add_field('link', 'z', np.arange(17.)) >>> map_min_of_outlinks_to_node(rmg, 'z') array([ 0., 1., 2., 0., 7., 8., 9., 0., 0., 0., 0., 0.])LLCATS: NINF LINF MAP
map_sum_of_inlinks_to_node
(grid, var_name, out=None)¶Map the sum of links entering a node to the node.
map_sum_of_inlinks_to_node takes an array at the links and finds the inlink values for each node in the grid. it sums the inlinks and returns values at the nodes.
Note
This considers all inactive links to have a value of 0.
Construction:
grid.map_sum_of_inlinks_to_node(var_name, out=None)
Parameters: var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or None to create a new array.
Returns: ndarray
Mapped values at nodes.
Examples
>>> import numpy as np >>> from landlab.grid.raster_mappers import map_sum_of_inlinks_to_node >>> from landlab import RasterModelGrid>>> rmg = RasterModelGrid((3, 4)) >>> _ = rmg.add_field('link', 'z', np.arange(17.)) >>> map_sum_of_inlinks_to_node(rmg, 'z') array([ 0., 0., 1., 2., 3., 11., 13., 15., 10., 25., 27., 29.])LLCATS: NINF LINF MAP
map_sum_of_outlinks_to_node
(grid, var_name, out=None)¶Map the sum of links leaving a node to the node.
map_sum_of_outlinks_to_node takes an array at the links and finds the outlink values for each node in the grid. it sums the outlinks and returns values at the nodes.
Note
This considers all inactive links to have a value of 0.
Construction:
grid.map_sum_of_outlinks_to_node(var_name, out=None)
Parameters: var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or None to create a new array.
Returns: ndarray
Mapped values at nodes.
Examples
>>> import numpy as np >>> from landlab.grid.raster_mappers import map_sum_of_outlinks_to_node >>> from landlab import RasterModelGrid>>> rmg = RasterModelGrid((3, 4)) >>> _ = rmg.add_field('link', 'z', np.arange(17.)) >>> map_sum_of_outlinks_to_node(rmg, 'z') array([ 3., 5., 7., 6., 17., 19., 21., 13., 14., 15., 16., 0.])LLCATS: NINF LINF MAP
node_has_boundary_neighbor
(ids, method='d8')[source]¶Check if nodes have neighbors that are boundary nodes.
Checks to see if one of the eight neighbor nodes of node(s) with id has a boundary node. Returns True if a node has a boundary node, False if all neighbors are interior.
Examples
>>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((5, 5)) >>> mg.node_has_boundary_neighbor(6) True >>> mg.node_has_boundary_neighbor(12) False >>> mg.node_has_boundary_neighbor([12, -1]) array([False, True], dtype=bool)>>> mg.node_has_boundary_neighbor(25) Traceback (most recent call last): ... IndexError: index 25 is out of bounds for axis 0 with size 25LLCATS: NINF CONN BC
node_is_core
([ids])[source]¶Check if a node is a core node.
Returns an boolean array of truth values for each node ID provided; True if the node is a core node, False otherwise. If no IDs are provided, method returns a boolean array for every node.
(Core status is typically indicated by a value of 0 in node_status.)
LLCATS: NINF BC
node_spacing
¶Spacing betweem node rows and columns.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.node_spacing 1.0 >>> grid = RasterModelGrid((4, 5), 3.0) >>> grid.node_spacing 3.0LLCATS: DEPR GINF NINF MEAS
node_vector_to_raster
(u, flip_vertically=False)[source]¶Unravel an array of node values.
Converts node vector u to a 2D array and returns it, so that it can be plotted, output, etc.
If the flip_vertically keyword is True, this function returns an array that has the rows in reverse order. This is useful for use in plot commands (such as the image display functions) that puts the first row at the top of the image. In the landlab coordinate system, the first row is thought to be at the bottom. Thus, a flipped matrix will plot in the landlab style with the first row at the bottom.
The returned array is a view of u, not a copy.
LLCATS: GINF NINF
nodes
¶Get a shaped array of nodes.
Returns: ndarray
Node IDs in an array shaped as number_of_node_rows by number_of_node_columns.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4)) >>> grid.nodes array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]])You can’t change node ids.
>>> grid.nodes[0] = 99 Traceback (most recent call last): ValueError: assignment destination is read-onlyLLCATS: NINF
nodes_are_all_core
(ids)[source]¶Check if nodes are all core.
Returns a single boolean truth value, True if all nodes with IDs are core nodes, False if not.
Parameters: ids : array-like
Grid nodes.
Returns: boolean
True
if all the given nodes are core nodes.LLCATS: NINF BC
nodes_around_point
(xcoord, ycoord)[source]¶Get the nodes surrounding a point.
Return IDs of the four nodes of the area around a point with coordinates xcoord, ycoord. Node IDs are returned counter-clockwise order starting from the southwest node.
If either xcoord or ycoord are arrays the usual numpy broadcasting rules apply.
Parameters: xcoord : float, array-like
x-coordinate of point
ycoord : float, array-like
y-coordinate of point
Returns: (4, N) ndarray
IDs of nodes around the point.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4)) >>> grid.nodes_around_point(.4, 1.2) array([4, 8, 9, 5])>>> grid.nodes_around_point([.9, 1.1], 1.2) array([[ 4, 5], [ 8, 9], [ 9, 10], [ 5, 6]])>>> grid = RasterModelGrid((3, 4), spacing=(2, 1)) >>> grid.nodes_around_point(.5, 1.5) array([0, 4, 5, 1]) >>> grid = RasterModelGrid((3, 4)) >>> grid.nodes_around_point(.5, 1.5) array([4, 8, 9, 5])LLCATS: NINF SUBSET
nodes_at_bottom_edge
¶Get nodes along the bottom edge of a grid.
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4)) >>> vals = np.array([ 0, 1, 2, 3, ... 4, 5, 6, 7, ... 8, 9, 10, 11]) >>> vals[grid.nodes_at_bottom_edge] array([0, 1, 2, 3])LLCATS: NINF BC SUBSET
nodes_at_corners_of_grid
¶Get array of the nodes in grid corners.
Return the IDs to the corner nodes of the grid, sorted by ID.
Returns: (4, ) ndarray
Array of corner node IDs.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.nodes_at_corners_of_grid array([ 0, 4, 15, 19])LLCATS: GINF NINF SUBSET
nodes_at_edge
(edge)[source]¶Get edge nodes by edge name.
Parameters: edge : {‘right’, ‘top’, ‘left’, ‘bottom’}
Edge location.
Returns: slice
Slice of the nodes on an edge.
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4)) >>> vals = np.array([ 0, 1, 2, 3, ... 4, 5, 6, 7, ... 8, 9, 10, 11]) >>> vals[grid.nodes_at_edge('left')] array([0, 4, 8])LLCATS: NINF BC SUBSET
nodes_at_left_edge
¶Get nodes along the left edge of a grid.
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4)) >>> vals = np.array([ 0, 1, 2, 3, ... 4, 5, 6, 7, ... 8, 9, 10, 11]) >>> vals[grid.nodes_at_left_edge] array([0, 4, 8])LLCATS: NINF BC SUBSET
nodes_at_patch
¶Get array of nodes of a patch.
Returns the four nodes at the corners of each patch in a regular grid. Shape of the returned array is (nnodes, 4). Returns in order CCW from east, i.e., [NE, NW, SW, SE].
Examples
>>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((3, 3)) >>> mg.nodes_at_patch array([[4, 3, 0, 1], [5, 4, 1, 2], [7, 6, 3, 4], [8, 7, 4, 5]])LLCATS: NINF PINF CONN
nodes_at_right_edge
¶Get nodes along the right edge of a grid.
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4)) >>> vals = np.array([ 0, 1, 2, 3, ... 4, 5, 6, 7, ... 8, 9, 10, 11]) >>> vals[grid.nodes_at_right_edge] array([ 3, 7, 11])LLCATS: NINF BC SUBSET
nodes_at_top_edge
¶Get nodes along the top edge of a grid.
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4)) >>> vals = np.array([ 0, 1, 2, 3, ... 4, 5, 6, 7, ... 8, 9, 10, 11]) >>> vals[grid.nodes_at_top_edge] array([ 8, 9, 10, 11])LLCATS: NINF BC SUBSET
number_of_cell_columns
¶Number of cell columns.
Returns the number of columns, including boundaries.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.number_of_cell_columns 3LLCATS: GINF NINF
number_of_cell_rows
¶Number of cell rows.
Returns the number of rows, including boundaries.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.number_of_cell_rows 2LLCATS: GINF CINF
number_of_interior_nodes
¶Number of interior nodes.
Returns the number of interior nodes on the grid, i.e., non-perimeter nodes. Compare self.number_of_core_nodes.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.number_of_interior_nodes 6LLCATS: NINF
number_of_node_columns
¶Number of node columns.
Returns the number of columns, including boundaries.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.number_of_node_columns 5LLCATS: GINF NINF
number_of_node_rows
¶Number of node rows.
Returns the number of rows, including boundaries.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.number_of_node_rows 4LLCATS: GINF NINF
number_of_patches
¶Number of patches.
Returns the number of patches over the grid.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.number_of_patches 12LLCATS: PINF
patches_at_link
¶Get array of patches adjoined to each link.
Missing paches are indexed as -1.
Examples
>>> mg = RasterModelGrid((3, 4)) >>> mg.patches_at_link array([[ 0, -1], [ 1, -1], [ 2, -1], [ 0, -1], [ 0, 1], [ 1, 2], [ 2, -1], [ 0, 3], [ 1, 4], [ 2, 5], [ 3, -1], [ 3, 4], [ 4, 5], [ 5, -1], [ 3, -1], [ 4, -1], [ 5, -1]])LLCATS: PINF LINF CONN
patches_at_node
¶Get array of patches attached to nodes.
Returns a (N, 4) array of the patches associated with each node in the grid. The four possible patches are returned in order CCW from east, i.e., NE, NW, SW, SE.
Missing patches are indexed -1.
Examples
>>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((3, 3)) >>> mg.patches_at_node array([[ 0, -1, -1, -1], [ 1, 0, -1, -1], [-1, 1, -1, -1], [ 2, -1, -1, 0], [ 3, 2, 0, 1], [-1, 3, 1, -1], [-1, -1, -1, 2], [-1, -1, 2, 3], [-1, -1, 3, -1]])LLCATS: PINF NINF CONN
roll_nodes_ud
(data_name, shift, interior_only=False)[source]¶Roll (shift) specified data on nodes up or down in a raster grid.
Similar to the Numpy roll() function, in that it shifts node values up by shift rows, wrapping the data in the top row(s) around to the bottom. If the interior_only is set, data along the left and right grid edges are not changed.
Note that the contents of the data_name field are changed.
Parameters: data_name : string
Name of node-data item attached to grid.
shift : int
Number of rows to shift upward.
interior_only : bool, optional
If True, data along left and right edges are not shifted
Examples
>>> from landlab import RasterModelGrid >>> rmg = RasterModelGrid((4, 3), 1.) >>> data = rmg.add_zeros('test_data', at='node') >>> data[:] = np.arange(12) >>> rmg.roll_nodes_ud('test_data', 1) >>> data array([ 9., 10., 11., 0., 1., 2., 3., 4., 5., 6., 7., 8.]) >>> rmg.roll_nodes_ud('test_data', 2) >>> data array([ 3., 4., 5., 6., 7., 8., 9., 10., 11., 0., 1., 2.]) >>> rmg.roll_nodes_ud('test_data', 1, interior_only=True) >>> data array([ 3., 1., 5., 6., 4., 8., 9., 7., 11., 0., 10., 2.])LLCATS: NINF
save
(path, names=None, format=None, at=None)[source]¶Save a grid and fields.
If more than one field name is specified for names when saving to ARC ascii, multiple files will be produced, suffixed with the field names.
When saving to netCDF (.nc), the fields are incorporated into the single named .nc file.
Parameters: path : str
Path to output file.
names : iterable of strings, optional
List of field names to save, defaults to all if not specified.
format : {‘netcdf’, ‘esri-ascii’}, optional
Output file format. Guess from file extension if not given.
at : str
Grid element where values are defined.
Examples
>>> from landlab import RasterModelGrid >>> import os >>> rmg = RasterModelGrid((4, 5)) >>> rmg.save('./mysave.nc') >>> os.remove('mysave.nc') #to remove traces of this testLLCATS: GINF
second_ring_looped_neighbors_at_cell
¶Get list of second ring looped neighbor cell IDs (all 16 neighbors).
Returns lists of looped second ring neighbor cell IDs of given cell ids. If cell ids are not given, it returns a 2D array of size ( self.number_of_cells, 16 ).
The cells are the 16 which encircle the nine true neighbor cells. Order of neighbors: Starts with E and goes counter clockwise
Examples
>>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((10, 10)) >>> mg.second_ring_looped_neighbors_at_cell[36, :] array([38, 46, 54, 53, 52, 51, 50, 42, 34, 26, 18, 19, 20, 21, 22, 30]) >>> mg.second_ring_looped_neighbors_at_cell[8, :] array([10, 18, 26, 25, 24, 31, 30, 22, 14, 6, 62, 63, 56, 57, 58, 2])...take a look at the cell grid to understand why: [56, 57, 58, 59, 60, 61, 62, 63] [48, 49, 50, 51, 52, 53, 54, 55] [40, 41, 42, 43, 44, 45, 46, 47] [32, 33, 34, 35, 36, 37, 38, 39] [24, 25, 26, 27, 28, 29, 30, 31] [16, 17, 18, 19, 20, 21, 22, 23] [ 8, 9, 10, 11, 12, 13, 14, 15] [ 0, 1, 2, 3, 4, 5, 6, 7]
LLCATS: CINF CONN BC
set_closed_boundaries_at_grid_edges
(right_is_closed, top_is_closed, left_is_closed, bottom_is_closed)[source]¶Set boundary not to be closed.
Sets the status of nodes along the specified side(s) of a raster grid (bottom, right, top, and/or left) to
CLOSED_BOUNDARY
.Arguments are booleans indicating whether the bottom, left, top, and right are closed (
True
) or not (False
).For a closed boundary:
- the nodes are flagged
CLOSED_BOUNDARY
(status type 4)- all links that connect to a
CLOSED_BOUNDARY
node are flagged as inactive (so they appear on link-based lists, but not active_link-based lists)This means that if you call the calc_grad_at_active_link method, links connecting to closed boundaries will be ignored: there can be no gradients or fluxes calculated, because the links that connect to that edge of the grid are not included in the calculation. So, setting a grid edge to CLOSED_BOUNDARY is a convenient way to impose a no-flux boundary condition. Note, however, that this applies to the grid as a whole, rather than a particular variable that you might use in your application. In other words, if you want a no-flux boundary in one variable but a different boundary condition for another, then use another method.
This method is a replacement for the now-deprecated method set_inactive_boundaries(). Unlike that method, this one ONLY sets nodes to CLOSED_BOUNDARY; it does not set any nodes to FIXED_VALUE_BOUNDARY.
Parameters: right_is_closed : boolean
If
True
right-edge nodes are closed boundaries.
- top_is_closed
: booleanIf
True
top-edge nodes are closed boundaries.- left_is_closed
: booleanIf
True
left-edge nodes are closed boundaries.- bottom_is_closed
: booleanIf
True
bottom-edge nodes are closed boundaries.Notes
Note that the four corners are treated as follows:
- bottom left = BOTTOM
- bottom right = BOTTOM
- top right = TOP
- top left = TOP
This scheme is necessary for internal consistency with looped boundaries.
LLCATS: BC SUBSET
set_fixed_link_boundaries_at_grid_edges
(right_is_fixed, top_is_fixed, left_is_fixed, bottom_is_fixed, link_value=None, node_value=None, fixed_node_value_of='topographic__elevation', fixed_link_value_of='topographic__slope')[source]¶Create fixed link boundaries at the grid edges.
Sets the status of links along the specified side(s) of a raster grid— bottom vertical links, right horizontal, top vertical links, and/or left horizontal links —to FIXED_LINK.
By definition, fixed links exist between fixed gradient nodes (status_at_node == 2) and core nodes (status_at_node == 0). Because the outer ring of nodes are fixed gradient (status_at_node == 2), the links between them are inactive (status_at_link == 4) and are not set using this function (the inactive links are the top and bottom horizontal edge links, and left and right edge vertical edge links.)
Arguments are booleans indicating whether the bottom, right, top, and left sides are to be set (True) or not (False).
node_value controls what values are held constant at the fixed gradient nodes (status_at_node == 2). It can be either a float, an array of length number_of_fixed_nodes or number_of_nodes (total), or left blank. If left blank, the values will be set from the those already in the grid fields, according to ‘fixed_node_value_of’.
link_value controls what values are held constant at the fixed links (status_at_link == 2). It can be either a float, an array of length number_of_fixed_links or number_of_links (total), or left blank. If left blank, the values will be set from the those already in the grid fields, according to ‘fixed_link_value_of’.
fixed_node_value_of controls the name of the model field that contains the node values. Remember, if you don’t set value, the fixed gradient node values will be set from the field values *at the time you call this method*. If no values are present in the field, the module will complain but accept this, warning that it will be unable to automatically update boundary conditions (and such methods, e.g.,
RasterModelGrid.update_boundary_nodes()
, will raise exceptions if you try).fixed_link_value_of controls the name of the model field that contains the fixed link values. Remember, if you don’t set value, the fixed link values will be set from the field values *at the time you call this method*. If no values are present in the field, the module will complain but accept this, warning that it will be unable to automatically update boundary conditions (and such methods, e.g.,
RasterModelGrid.update_boundary_nodes()
, will raise exceptions if you try).The following example sets the bottom and right link boundaries as fixed-value in a four-row by nine-column grid that initially has all boundaries set to fixed_gradient (nodes, i.e. flagged at (status_at_node == 2) and fixed_link (links, i.e., flagged as (status_at_link == 2).
Parameters: right_is_fixed : boolean
Set right edge horizontal links as fixed boundary.
top_is_fixed : boolean
Set top edge vertical links as fixed boundary.
left_is_fixed : boolean
Set left edge horizontal links as fixed boundary.
bottom_is_fixed : boolean
Set bottom edge vertical links as fixed boundary.
link_value : float, array or None (default).
Override value to be kept constant at links.
node_value : float, array or None (default).
Override value to be kept constant at nodes.
fixed_node_value_of : string.
The name of the grid field containing the values of interest at nodes.
fixed_link_value_of : string.
The name of the grid field containing the values of interest at links.
Examples
The following grid is used in the example:
*--I--->*--I--->*--I--->*--I--->*--I--->*--I--->*--I--->*--I--->* ^ ^ ^ ^ ^ ^ ^ ^ ^ I X X X X X X X I | | | | | | | | | *--X--->o o o o o o o--X--->* ^ ^ ^ ^ ^ ^ ^ ^ ^ I | | | | | | | I | | | | | | | | | *--X--->o o o o o o o--X--->* ^ ^ ^ ^ ^ ^ ^ ^ ^ I X X X X X X X I | | | | | | | | | *--I--->*--I--->*--I--->*--I--->*--I--->*--I--->*--I--->*--I--->*Note
Links set to
ACTIVE_LINK
are not indicated in this diagram.
*
indicates the nodes that are set toFIXED_GRADIENT BOUNDARY
o
indicates the nodes that are set toCORE_NODE
I
indicates the links that are set toINACTIVE_LINK
X
indicates the links that are set toFIXED_LINK
>>> from landlab import RasterModelGrid >>> rmg = RasterModelGrid((4, 9), 1.0) # rows, columns, spacing >>> import numpy as np >>> z = np.arange(0, rmg.number_of_nodes) >>> s = np.arange(0, rmg.number_of_links) >>> rmg['node']['topographic__elevation'] = z >>> rmg['link']['topographic__slope'] = s >>> rmg.set_fixed_link_boundaries_at_grid_edges(True, True, True, True) >>> rmg.status_at_node array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2], dtype=int8) >>> rmg.status_at_link array([4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4]) >>> rmg.fixed_link_properties['fixed_gradient_of'] 'topographic__slope' >>> rmg.fixed_gradient_node_properties['fixed_gradient_of'] 'topographic__elevation'LLCATS: BC SUBSET
set_fixed_value_boundaries_at_grid_edges
(right_is_fixed_val, top_is_fixed_val, left_is_fixed_val, bottom_is_fixed_val, value=None, value_of='topographic__elevation')[source]¶Create fixed values boundaries.
Sets the status of nodes along the specified side(s) of a raster grid—bottom, right, top, and/or left—to FIXED_VALUE_BOUNDARY.
Arguments are booleans indicating whether the bottom, right, top, and left sides are to be set (True) or not (False).
value controls what values are held constant at these nodes. It can be either a float, an array of length number_of_fixed_nodes or number_of_nodes (total), or left blank. If left blank, the values will be set from the those already in the grid fields, according to ‘value_of’.
value_of controls the name of the model field that contains the values. Remember, if you don’t set value, the fixed values will be set from the field values *at the time you call this method*. If no values are present in the field, the module will complain but accept this, warning that it will be unable to automatically update boundary conditions (and such methods, e.g.,
RasterModelGrid.update_boundary_nodes()
, will raise exceptions if you try).The status of links (active or inactive) is automatically updated to reflect the changes.
The following example sets the bottom and right boundaries as fixed-value in a four-row by five-column grid that initially has all boundaries closed (i.e., flagged as node_status=4):
Parameters: bottom_is_fixed_val : boolean
Set bottom edge as fixed boundary.
left_is_fixed_val : boolean
Set left edge as fixed boundary.
top_is_fixed_val : boolean
Set top edge as fixed boundary.
right_is_fixed_val : boolean
Set right edge as fixed boundary.
value : float, array or None (default).
Override value to be kept constant at nodes.
value_of : string.
The name of the grid field containing the values of interest.
Examples
>>> from landlab import RasterModelGrid >>> rmg = RasterModelGrid((4, 5), spacing=(1, 1)) >>> rmg.number_of_active_links 17Put some arbitrary values in the grid fields:
>>> import numpy as np >>> rmg.at_node['topographic__elevation'] = np.random.rand(20) >>> rmg.set_closed_boundaries_at_grid_edges(True, True, True, True) >>> rmg.status_at_node array([4, 4, 4, 4, 4, 4, 0, 0, 0, 4, 4, 0, 0, 0, 4, 4, 4, 4, 4, 4], dtype=int8) >>> rmg.set_fixed_value_boundaries_at_grid_edges( ... True, True, False, False) >>> rmg.number_of_active_links 12 >>> rmg.status_at_node array([4, 4, 4, 4, 4, 4, 0, 0, 0, 1, 4, 0, 0, 0, 1, 1, 1, 1, 1, 1], dtype=int8)Note that the four corners are treated as follows:
- bottom left = BOTTOM
- bottom right = BOTTOM
- top right = TOP
- top left = TOP
This scheme is necessary for internal consistency with looped boundaries.
LLCATS: BC SUBSET
set_inactive_boundaries
(*args, **kwargs)[source]¶Set boundary nodes to be inactive.
Note
This method is deprecated as of Landlab version 0.5.
Use
set_closed_boundaries_at_grid_edges()
instead.Handles boundary conditions by setting each of the four sides of the rectangular grid to either ‘inactive’ or ‘active (fixed value)’ status. Arguments are booleans indicating whether the bottom, right, top, and left are inactive (True) or not (False).
For an inactive boundary:
- the nodes are flagged CLOSED_BOUNDARY (normally status type 4)
- the links between them and the adjacent interior nodes are inactive (so they appear on link-based lists, but not active_link-based lists)
This means that if you call the calc_grad_at_active_link method, the inactive boundaries will be ignored: there can be no gradients or fluxes calculated, because the links that connect to that edge of the grid are not included in the calculation. So, setting a grid edge to CLOSED_BOUNDARY is a convenient way to impose a no-flux boundary condition. Note, however, that this applies to the grid as a whole, rather than a particular variable that you might use in your application. In other words, if you want a no-flux boundary in one variable but a different boundary condition for another, then use another method.
Notes
The four corners are treated as follows:
- bottom left = BOTTOM
- bottom right = BOTTOM
- top right = TOP
- top left = TOP
This scheme is necessary for internal consistency with looped boundaries.
LLCATS: DEPR BC SUBSET
Examples
The following example sets the top and left boundaries as inactive in a four-row by five-column grid that initially has all boundaries active and all boundary nodes coded as FIXED_VALUE_BOUNDARY (=1):
>>> from landlab import RasterModelGrid >>> rmg = RasterModelGrid((4, 5), 1.0) # rows, columns, spacing >>> rmg.number_of_active_links 17 >>> rmg.status_at_node array([1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1], dtype=int8) >>> rmg.set_inactive_boundaries(False, True, True, False) >>> rmg.number_of_active_links 12 >>> rmg.status_at_node array([1, 1, 1, 1, 1, 4, 0, 0, 0, 1, 4, 0, 0, 0, 1, 4, 4, 4, 4, 4], dtype=int8)
set_looped_boundaries
(top_bottom_are_looped, sides_are_looped)[source]¶Create wrap-around boundaries.
Handles boundary conditions by setting corresponding parallel grid edges as looped “tracks_cell” (==3) status, linked to each other. If top_bottom_are_looped is True, the top and bottom edges will link to each other. If sides_are_looped is True, the left and right edges will link to each other.
Looped boundaries are experimental, and not as yet well integrated into the Landlab framework. Many functions may not recognise them, or silently create unforeseen errors. Use at your own risk!
Note that because of the symmetries this BC implies, the corner nodes are all paired with the bottom/top edges, not the sides.
Parameters: top_bottom_are_looped : bool
Top and bottom are wrap-around.
sides_are_looped : bool
Left and right sides are wrap-around.
Examples
>>> from landlab import RasterModelGrid >>> rmg = RasterModelGrid((4, 5), 1.0) # rows, columns, spacing >>> rmg.number_of_active_links 17 >>> rmg.status_at_node array([1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1], dtype=int8) >>> rmg.add_zeros('topographic__elevation', at='node') array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) >>> rmg.set_looped_boundaries(True, True) >>> rmg.looped_node_properties['boundary_node_IDs'] array([ 0, 1, 2, 3, 4, 5, 9, 10, 14, 15, 16, 17, 18, 19]) >>> rmg.looped_node_properties['linked_node_IDs'] array([10, 11, 12, 13, 14, 8, 6, 13, 11, 5, 6, 7, 8, 9])LLCATS: BC SUBSET
set_open_nodes_disconnected_from_watershed_to_closed
(node_data, outlet_id=None, nodata_value=-9999.0, adjacency_method='D8')[source]¶Identifys all non-closed nodes that are disconnected from the node given in outlet_id and sets them as closed.
If outlet_id is not given, the outlet will be identified as the node for which the status at the node is FIXED_VALUE_BOUNDARY. If more than one node has this value, the algorithm will fail.
If outlet_id is given, the algorithm will check that it is not a node with status of CLOSED_BOUNDARY.
The method supports both D4 and D8 (default) neighborhood evaluation in determining if a node is connected. This can be modified with the flag adjacency_method.
This function can be run directly, or by setting the flag remove_disconnected to True in set_watershed_boundary_condition
Parameters: node_data : ndarray
Data values.
outlet_id : one element numpy array, optional.
The node ID of the outlet that all open nodes must be connected to. If a node ID is provided, it does not need have the status FIXED_VALUE_BOUNDARY. However, it must not have the status of CLOSED_BOUNDARY.
nodata_value : float, optional, default is -9999.
Value that indicates an invalid value.
adjacency_method : string, optional. Default is ‘D8’.
Sets the connection method.
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> mg1 = RasterModelGrid((4,6)) >>> z1 = np.array([-9999., -9999., -9999., -9999., -9999., -9999., ... -9999., 67., 67., -9999., 50., -9999., ... -9999., 67., 0., -9999., -9999., -9999., ... -9999., -9999., -9999., -9999., -9999., -9999.]) >>> mg2 = RasterModelGrid((4,6)) >>> z2 = np.array([-9999., -9999., -9999., -9999., -9999., -9999., ... -9999., 67., 67., -9999., 50., -9999., ... -9999., 67., 0., -9999., -9999., -9999., ... -9999., -9999., -9999., -9999., -9999., -9999.]) >>> mg1.set_watershed_boundary_condition(z1, remove_disconnected=True) >>> mg2.set_watershed_boundary_condition(z2) >>> mg2.status_at_node.reshape(mg2.shape) array([[4, 4, 4, 4, 4, 4], [4, 0, 0, 4, 0, 4], [4, 0, 1, 4, 4, 4], [4, 4, 4, 4, 4, 4]], dtype=int8) >>> mg2.set_open_nodes_disconnected_from_watershed_to_closed(z2) >>> np.allclose(mg1.status_at_node, mg2.status_at_node) True >>> np.allclose(z1, z2) True >>> mg2.status_at_node.reshape(mg2.shape) array([[4, 4, 4, 4, 4, 4], [4, 0, 0, 4, 4, 4], [4, 0, 1, 4, 4, 4], [4, 4, 4, 4, 4, 4]], dtype=int8) >>> z1.reshape(mg1.shape) array([[-9999., -9999., -9999., -9999., -9999., -9999.], [-9999., 67., 67., -9999., -9999., -9999.], [-9999., 67., 0., -9999., -9999., -9999.], [-9999., -9999., -9999., -9999., -9999., -9999.]])LLCATS: BC
set_status_at_node_on_edges
(grid, right=None, top=None, left=None, bottom=None)¶Set node status on grid edges.
Parameters: right : int, optional
Node status along right edge.
top : int, optional
Node status along top edge.
left : int, optional
Node status along left edge.
bottom : int, optional
Node status along bottom edge.
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY>>> grid = RasterModelGrid((3, 4)) >>> grid.status_at_node array([1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1], dtype=int8)>>> grid.set_status_at_node_on_edges(right=CLOSED_BOUNDARY) >>> grid.status_at_node array([1, 1, 1, 4, 1, 0, 0, 4, 1, 1, 1, 4], dtype=int8)>>> from landlab import FIXED_GRADIENT_BOUNDARY >>> grid = RasterModelGrid((3, 4))The status of a corner is set along with its clockwise edge. That is, if setting the status for the top and right edges, the upper-right corner has the status of the right edge.
>>> grid.set_status_at_node_on_edges(top=CLOSED_BOUNDARY, ... right=FIXED_GRADIENT_BOUNDARY) >>> grid.status_at_node array([1, 1, 1, 2, 1, 0, 0, 2, 4, 4, 4, 2], dtype=int8)In the above example, if you wanted the corner to have the status of the top edge, you need to make two calls to set_status_at_node_on_edges,
>>> grid = RasterModelGrid((3, 4)) >>> grid.set_status_at_node_on_edges(right=FIXED_GRADIENT_BOUNDARY) >>> grid.set_status_at_node_on_edges(top=CLOSED_BOUNDARY) >>> grid.status_at_node array([1, 1, 1, 2, 1, 0, 0, 2, 4, 4, 4, 4], dtype=int8)An example that sets all of the edges shows how corners are set.
>>> grid.set_status_at_node_on_edges(right=1, top=2, left=3, bottom=4) >>> grid.status_at_node array([3, 4, 4, 4, 3, 0, 0, 1, 2, 2, 2, 1], dtype=int8)LLCATS: BC
set_watershed_boundary_condition
(node_data, nodata_value=-9999.0, return_outlet_id=False, remove_disconnected=False, adjacency_method='D8')[source]¶Finds the node adjacent to a boundary node with the smallest value. This node is set as the outlet. The outlet node must have a data value. Can return the outlet id as a one element numpy array if return_outlet_id is set to True.
All nodes with nodata_value are set to CLOSED_BOUNDARY (grid.status_at_node == 4). All nodes with data values are set to CORE_NODES (grid.status_at_node == 0), with the exception that the outlet node is set to a FIXED_VALUE_BOUNDARY (grid.status_at_node == 1).
Note that the outer ring (perimeter) of the raster is set to CLOSED_BOUNDARY, even if there are nodes that have values. The only exception to this would be if the outlet node is on the perimeter, which is acceptable.
This routine assumes that all of the nodata_values are on the outside of the data values. In other words, there are no islands of nodata_values surrounded by nodes with data.
This also assumes that the grid has a single watershed (that is a single outlet node).
If you are considering running flow routing algorithms on this model grid, it is recommended that you verify the absence of non-closed nodes surrounded only by closed nodes. The presence of these isolated non- closed nodes may result from clipping a raster to a polygon and will prevent the flow router from functioning as intended.
This can be acomplished by setting the parameter: remove_disconnected to True (default is False).
This will run the function: set_open_nodes_disconnected_from_watershed_to_closed which will find any isolated open nodes that have no neigbors in the main watershed and set them to closed. The adjacency method used to assess connectivity can be set to either ‘D8’(default) or ‘D4’ using the flag adjacency_method.
Finally, the developer has seen cases in which DEM data that has been filled results in a different outlet from DEM data which has not been filled. Be aware that if you identify an outlet on a filled DEM, make sure that the filled DEM is what is being used for your modeling. Otherwise, this may find a different outlet. To force the outlet location, use either set_watershed_boundary_condition_outlet_coords or set_watershed_boundary_condition_outlet_id.
Parameters: node_data : ndarray
Data values.
nodata_value : float, optional
Value that indicates an invalid value.
return_outlet_id : boolean, optional
Indicates whether or not to return the id of the found outlet
remove_disconnected : boolean, optional
Indicates whether to search for and remove disconnected nodes.
adjacency_method : string, optional. Default is ‘D8’.
Sets the connection method for use if remove_disconnected==True
Examples
The first example will use a 4,4 grid with node data values as illustrated:
-9999. -9999. -9999. -9999. -9999. 67. 0. -9999. -9999. 67. 67. -9999. -9999. -9999. -9999. -9999.
The second example will use a 4,4 grid with node data values as illustrated:
-9999. -9999. -9999. -9999. -9999. 67. 0. -9999. -9999. 67. 67. -2. -9999. -9999. -9999. -9999. ——— >>> import numpy as np >>> from landlab import RasterModelGrid >>> rmg = RasterModelGrid((4,4),1.) >>> node_data = np.array([-9999., -9999., -9999., -9999., ... -9999., 67., 67., -9999., ... -9999., 67., 0., -9999., ... -9999., -9999., -9999., -9999.]) >>> out_id = rmg.set_watershed_boundary_condition(node_data, -9999., ... True) >>> out_id array([10]) >>> rmg.status_at_node array([4, 4, 4, 4, 4, 0, 0, 4, 4, 0, 1, 4, 4, 4, 4, 4], dtype=int8) >>> rmg2 = RasterModelGrid((4,4),1.) >>> node_data2 = np.array([-9999., -9999., -9999., -9999., ... -9999., 67., 67., -2., ... -9999., 67., 0., -9999., ... -9999., -9999., -9999., -9999.]) >>> rmg2.set_watershed_boundary_condition(node_data2, -9999.) >>> rmg2.status_at_node array([4, 4, 4, 4, 4, 0, 0, 1, 4, 0, 0, 4, 4, 4, 4, 4], dtype=int8)
LLCATS: BC
set_watershed_boundary_condition_outlet_coords
(outlet_coords, node_data, nodata_value=-9999.0)[source]¶Set the boundary conditions for a watershed. All nodes with nodata_value are set to CLOSED_BOUNDARY (grid.status_at_node == 4). All nodes with data values are set to CORE_NODES (grid.status_at_node == 0), with the exception that the outlet node is set to a FIXED_VALUE_BOUNDARY (grid.status_at_node == 1).
Note that the outer ring of the raster is set to CLOSED_BOUNDARY, even if there are nodes that have values. The only exception to this would be if the outlet node is on the boundary, which is acceptable.
Assumes that outlet is already known.
This assumes that the grid has a single watershed. If this is not the case this will not work.
This must be passed the values of the outlet_row and outlet_column. Also takes node_data and optionally, nodata_value.
Parameters: outlet_coords : list - two integer values
row, column of outlet, NOT THE ABSOLUTE X AND Y LOCATIONS
node_data : ndarray
Data values.
nodata_value : float, optional
Value that indicates an invalid value.
Examples
The example will use a 4,4 grid with node data values as illustrated:
-9999. -9999. -9999. -9999. -9999. 67. 0. -9999. -9999. 67. 67. -9999. -9999. -9999. -9999. -9999.
>>> import numpy as np >>> from landlab import RasterModelGrid >>> rmg = RasterModelGrid((4,4),1.) >>> rmg.status_at_node array([1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1], dtype=int8) >>> node_data = np.array([-9999., -9999., -9999., -9999., ... -9999., 67., 67., -9999., ... -9999., 67., 0., -9999., ... -9999., -9999., -9999., -9999.]) >>> rmg.set_watershed_boundary_condition_outlet_coords( ... (2, 2), node_data, -9999.) >>> rmg.status_at_node array([4, 4, 4, 4, 4, 0, 0, 4, 4, 0, 1, 4, 4, 4, 4, 4], dtype=int8)LLCATS: BC
set_watershed_boundary_condition_outlet_id
(outlet_id, node_data, nodata_value=-9999.0)[source]¶Set the boundary conditions for a watershed. All nodes with nodata_value are set to CLOSED_BOUNDARY (4). All nodes with data values are set to CORE_NODES (0), with the exception that the outlet node is set to a FIXED_VALUE_BOUNDARY (1).
Note that the outer ring of the raster is set to CLOSED_BOUNDARY, even if there are nodes that have values. The only exception to this would be if the outlet node is on the boundary, which is acceptable.
Assumes that the id of the outlet is already known.
This assumes that the grid has a single watershed. If this is not the case this will not work.
Parameters: outlet_id : integer
id of the outlet node
node_data : ndarray
Data values.
nodata_value : float, optional
Value that indicates an invalid value.
Returns: outlet_loc : int
id of outlet location
Examples
The example will use a 4,4 grid with node data values as illustrated:
-9999. -9999. -9999. -9999. -9999. 67. 0. -9999. -9999. 67. 67. -9999. -9999. -9999. -9999. -9999.
>>> import numpy as np >>> from landlab import RasterModelGrid >>> rmg = RasterModelGrid((4,4),1.) >>> rmg.status_at_node array([1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1], dtype=int8) >>> node_data = np.array([-9999., -9999., -9999., -9999., ... -9999., 67., 67., -9999., ... -9999., 67., 0., -9999., ... -9999., -9999., -9999., -9999.]) >>> outlet = rmg.set_watershed_boundary_condition_outlet_id( ... 10, node_data, -9999.) >>> rmg.status_at_node array([4, 4, 4, 4, 4, 0, 0, 4, 4, 0, 1, 4, 4, 4, 4, 4], dtype=int8)LLCATS: BC
shape
¶Get the shape of the grid.
Returns: shape : tuple of ints
The shape of the grid as number of node rows and node columns.
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4)) >>> grid.shape (3, 4)LLCATS: GINF NINF
snap_coords_to_grid
(*args, **kwargs)[source]¶Snap coordinates to the nearest node.
This method takes existing coordinates, inside the grid, and returns the ID of the closest grid node. That node can be a boundary node.
LLCATS: DEPR NINF SUBSET
update_boundary_nodes
(*args, **kwargs)[source]¶Update the boundary nodes.
Note
This method is deprecated as of Landlab version 1.0.
Use
_update_links_nodes_cells_to_new_BCs()
instead.This method updates all the boundary nodes in the grid field on which they are set (i.e., it updates the field rmg.at_node[rmg.fixed_gradient_node_properties[‘fixed_gradient_of’]]). It currently works only with fixed value (type 1) and fixed gradient (type 2) conditions. Looping must be handled internally to a component, and is not dealt with here.
LLCATS: DEPR NINF BC
update_noflux_boundaries
(*args, **kwargs)[source]¶Deprecated.
Note
This method is deprecated as of Landlab version 0.1.
Use
set_closed_boundaries_at_grid_edges()
instead.Sets the value of u at all noflux boundary cells equal to the value of their interior neighbors, as recorded in the “boundary_nbrs” array.
LLCATS: DEPR BC
vertical_links
¶LLCATS: LINF
- class
RasterModelGridPlotter
[source]¶Bases:
object
MixIn that provides plotting functionality.
Inhert from this class to provide a ModelDataFields object with the method function,
imshow
, that plots a data field.
from_dict
(param_dict)[source]¶Create a RasterModelGrid from a dict-like object.
Create a RasterModelGrid from the dictionary-like object, param_dict. Required keys of the dictionary are NUM_ROWS, NUM_COLS. Raises a KeyError if either of these are missing is given, use it as the HexModelGrid dx parameter, otherwise default to unit spacing.
grid_edge_is_closed_from_dict
(boundary_conditions)[source]¶Get a list of closed-boundary status at grid edges.
Get a list that indicates grid edges that are closed boundaries. The returned list provides a boolean that gives the boundary condition status for edges order as [bottom, left, top, right].
boundary_conditions is a dict whose keys indicate edge location (as “bottom”, “left”, “top”, “right”) and values must be one of “open”, or “closed”. If an edge location key is missing, that edge is assumed to be open.
Parameters: boundary_conditions : dict
Boundary condition for grid edges.
Returns: list
List of booleans indicating if an edge is a closed boundary.
Examples
>>> from landlab.grid.raster import grid_edge_is_closed_from_dict >>> grid_edge_is_closed_from_dict(dict(bottom='closed', top='open')) [False, False, False, True] >>> grid_edge_is_closed_from_dict({}) [False, False, False, False]
Grid element mappers that are specific to raster grids.
map_sum_of_inlinks_to_node (grid, var_name[, out]) |
Map the sum of links entering a node to the node. |
map_mean_of_inlinks_to_node (grid, var_name) |
Map the mean of links entering a node to the node. |
map_max_of_inlinks_to_node (grid, var_name[, out]) |
Map the maximum of links entering a node to the node. |
map_min_of_inlinks_to_node (grid, var_name[, out]) |
Map the minimum of links entering a node to the node. |
map_sum_of_outlinks_to_node (grid, var_name) |
Map the sum of links leaving a node to the node. |
map_mean_of_outlinks_to_node (grid, var_name) |
Map the mean of links leaving a node to the node. |
map_max_of_outlinks_to_node (grid, var_name) |
Map the max of links leaving a node to the node. |
map_min_of_outlinks_to_node (grid, var_name) |
Map the min of links leaving a node to the node. |
map_mean_of_links_to_node (grid, var_name[, out]) |
Map the mean of links touching a node to the node. |
map_mean_of_horizontal_links_to_node (grid, ...) |
Map the mean of links in the x direction touching a node to the node. |
map_mean_of_horizontal_active_links_to_node (...) |
Map the mean of active links in the x direction touching node to the node. |
map_mean_of_vertical_links_to_node (grid, ...) |
Map the mean of links in the y direction touching a node to the node. |
map_mean_of_vertical_active_links_to_node (...) |
Map the mean of active links in the y direction touching node to the node. |
map_max_of_inlinks_to_node
(grid, var_name, out=None)[source]¶Map the maximum of links entering a node to the node.
map_max_of_inlinks_to_node takes an array at the links and finds the inlink values for each node in the grid. it finds the maximum value at the the inlinks and returns values at the nodes.
Note
This considers all inactive links to have a value of 0.
Construction:
map_max_of_inlinks_to_node(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.raster_mappers import map_max_of_inlinks_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('link', 'z', np.arange(17.))
>>> map_max_of_inlinks_to_node(rmg, 'z')
array([ 0., 0., 1., 2.,
3., 7., 8., 9.,
10., 14., 15., 16.])
LLCATS: NINF LINF MAP
map_max_of_outlinks_to_node
(grid, var_name, out=None)[source]¶Map the max of links leaving a node to the node.
map_max_of_outlinks_to_node takes an array at the links and finds the outlink values for each node in the grid. it finds the maximum value at the the outlinks and returns values at the nodes.
Note
This considers all inactive links to have a value of 0.
Construction:
map_max_of_outlinks_to_node(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.raster_mappers import map_max_of_outlinks_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('link', 'z', np.arange(17.))
>>> map_max_of_outlinks_to_node(rmg, 'z')
array([ 3., 4., 5., 6., 10., 11., 12., 13., 14., 15., 16.,
0.])
LLCATS: NINF LINF MAP
map_mean_of_horizontal_active_links_to_node
(grid, var_name, out=None)[source]¶Map the mean of active links in the x direction touching node to the node.
map_mean_of_horizontal_active_links_to_node takes an array at the links and finds the average of all horizontal (x-direction) link neighbor values for each node in the grid. It returns an array at the nodes of the mean of these values. If a link is absent, it is ignored. If a node has no active links, it receives 0. Note that here a positive returned value means flux to the east, and a negative to the west.
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.raster_mappers import map_mean_of_horizontal_active_links_to_node
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('link', 'z', -np.arange(17, dtype=float))
>>> rmg.status_at_node[rmg.nodes_at_left_edge] = CLOSED_BOUNDARY
>>> map_mean_of_horizontal_active_links_to_node(rmg, 'z')
array([ 0. , 0. , 0. , 0. , 0. , -8. , -8.5, -9. , 0. , 0. , 0. ,
0. ])
LLCATS: NINF LINF MAP
map_mean_of_horizontal_links_to_node
(grid, var_name, out=None)[source]¶Map the mean of links in the x direction touching a node to the node.
map_mean_of_horizontal_links_to_node takes an array at the links and finds the average of all horizontal (x-direction) link neighbor values for each node in the grid. It returns an array at the nodes of the mean of these values. If a link is absent, it is ignored. Note that here a positive returned value means flux to the east, and a negative to the west.
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.raster_mappers import map_mean_of_horizontal_links_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('link', 'z', np.arange(17.))
>>> map_mean_of_horizontal_links_to_node(rmg, 'z')
array([ 0. , 0.5, 1.5, 2. , 7. , 7.5, 8.5, 9. , 14. ,
14.5, 15.5, 16. ])
LLCATS: NINF LINF MAP
map_mean_of_inlinks_to_node
(grid, var_name, out=None)[source]¶Map the mean of links entering a node to the node.
map_mean_of_inlinks_to_node takes an array at the links and finds the inlink values for each node in the grid. It finds the average of the inlinks and returns values at the nodes.
This considers all inactive links to have a value of 0.
Construction:
map_mean_of_inlinks_to_node(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.raster_mappers import map_mean_of_inlinks_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('link', 'z', np.arange(17.))
>>> map_mean_of_inlinks_to_node(rmg, 'z')
array([ 0. , 0. , 0.5, 1. , 1.5, 5.5, 6.5, 7.5, 5. ,
12.5, 13.5, 14.5])
LLCATS: NINF LINF MAP
map_mean_of_links_to_node
(grid, var_name, out=None)[source]¶Map the mean of links touching a node to the node.
map_mean_all_links_to_node takes an array at the links and finds the average of all ~existing~ link neighbor values for each node in the grid. it returns values at the nodes.
Note
This considers all inactive links to have a value of 0.
Construction:
map_mean_of_links_to_node(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.raster_mappers import map_mean_of_links_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('link', 'z', np.arange(17.))
>>> map_mean_of_links_to_node(rmg, 'z')
array([ 1.5 , 1.66666667, 2.66666667, 4. ,
6.66666667, 7.5 , 8.5 , 9.33333333,
12. , 13.33333333, 14.33333333, 14.5 ])
LLCATS: NINF LINF MAP
map_mean_of_outlinks_to_node
(grid, var_name, out=None)[source]¶Map the mean of links leaving a node to the node.
map_mean_of_outlinks_to_node takes an array at the links and finds the outlink values for each node in the grid. it finds the average of the outlinks and returns values at the nodes.
Note
This considers all inactive links to have a value of 0.
Construction:
map_mean_of_outlinks_to_node(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.raster_mappers import map_mean_of_outlinks_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('link', 'z', np.arange(17.))
>>> map_mean_of_outlinks_to_node(rmg, 'z')
array([ 1.5, 2.5, 3.5, 3. , 8.5, 9.5, 10.5, 6.5, 7. ,
7.5, 8. , 0. ])
LLCATS: NINF LINF MAP
map_mean_of_vertical_active_links_to_node
(grid, var_name, out=None)[source]¶Map the mean of active links in the y direction touching node to the node.
map_mean_of_vertical_active_links_to_node takes an array at the links and finds the average of all vertical (y-direction) link neighbor values for each node in the grid. It returns an array at the nodes of the mean of these values. If a link is absent, it is ignored. If a node has no active links, it receives 0. Note that here a positive returned value means flux to the north, and a negative to the south.
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.raster_mappers import map_mean_of_vertical_active_links_to_node
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('link', 'z', -np.arange(17, dtype=float))
>>> rmg.status_at_node[rmg.nodes_at_bottom_edge] = CLOSED_BOUNDARY
>>> map_mean_of_vertical_active_links_to_node(rmg, 'z')
array([ 0., 0., 0., 0., 0., -11., -12., 0., 0., -11., -12.,
0.])
LLCATS: NINF LINF MAP
map_mean_of_vertical_links_to_node
(grid, var_name, out=None)[source]¶Map the mean of links in the y direction touching a node to the node.
map_mean_of_vertical_links_to_node takes an array at the links and finds the average of all vertical (y-direction) link neighbor values for each node in the grid. It returns an array at the nodes of the mean of these values. If a link is absent, it is ignored. Note that here a positive returned value means flux to the north, and a negative to the south.
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.raster_mappers import map_mean_of_vertical_links_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('link', 'z', np.arange(17.))
>>> map_mean_of_vertical_links_to_node(rmg, 'z')
array([ 3. , 4. , 5. , 6. , 6.5, 7.5, 8.5, 9.5, 10. ,
11. , 12. , 13. ])
LLCATS: NINF LINF MAP
map_min_of_inlinks_to_node
(grid, var_name, out=None)[source]¶Map the minimum of links entering a node to the node.
map_min_of_inlinks_to_node takes an array at the links and finds the inlink values for each node in the grid. it finds the minimum value at the the inlinks and returns values at the nodes.
Note
This considers all inactive links to have a value of 0.
Construction:
map_min_of_inlinks_to_node(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.raster_mappers import map_min_of_inlinks_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('link', 'z', np.arange(17.))
>>> map_min_of_inlinks_to_node(rmg, 'z')
array([ 0., 0., 0., 0., 0., 4., 5., 6., 0., 11., 12.,
13.])
LLCATS: NINF LINF MAP
map_min_of_outlinks_to_node
(grid, var_name, out=None)[source]¶Map the min of links leaving a node to the node.
map_min_of_outlinks_to_node takes an array at the links and finds the outlink values for each node in the grid. It finds the minimum value at the the outlinks and returns values at the nodes.
Note
This considers all inactive links to have a value of 0.
Construction:
map_min_of_outlinks_to_node(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.raster_mappers import map_min_of_outlinks_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('link', 'z', np.arange(17.))
>>> map_min_of_outlinks_to_node(rmg, 'z')
array([ 0., 1., 2., 0., 7., 8., 9., 0., 0., 0., 0., 0.])
LLCATS: NINF LINF MAP
map_sum_of_inlinks_to_node
(grid, var_name, out=None)[source]¶Map the sum of links entering a node to the node.
map_sum_of_inlinks_to_node takes an array at the links and finds the inlink values for each node in the grid. it sums the inlinks and returns values at the nodes.
Note
This considers all inactive links to have a value of 0.
Construction:
map_sum_of_inlinks_to_node(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.raster_mappers import map_sum_of_inlinks_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('link', 'z', np.arange(17.))
>>> map_sum_of_inlinks_to_node(rmg, 'z')
array([ 0., 0., 1., 2., 3., 11., 13., 15., 10., 25., 27.,
29.])
LLCATS: NINF LINF MAP
map_sum_of_outlinks_to_node
(grid, var_name, out=None)[source]¶Map the sum of links leaving a node to the node.
map_sum_of_outlinks_to_node takes an array at the links and finds the outlink values for each node in the grid. it sums the outlinks and returns values at the nodes.
Note
This considers all inactive links to have a value of 0.
Construction:
map_sum_of_outlinks_to_node(grid, var_name, out=None)
Parameters: | grid : ModelGrid
var_name : array or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.raster_mappers import map_sum_of_outlinks_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('link', 'z', np.arange(17.))
>>> map_sum_of_outlinks_to_node(rmg, 'z')
array([ 3., 5., 7., 6., 17., 19., 21., 13., 14., 15., 16.,
0.])
LLCATS: NINF LINF MAP
Calculate gradients on a raster grid.
calc_grad_at_link (grid, vals, \*args, \*\*kwds) |
Calculate gradients in node_values at links. |
calc_grad_at_active_link (grid, vals, \*args, ...) |
Calculate gradients over active links. |
calc_grad_across_cell_faces (grid, vals, ...) |
Get gradients across the faces of a cell. |
calc_grad_across_cell_corners (grid, vals, ...) |
Get gradients to diagonally opposite nodes. |
landlab.grid.raster_gradients.alculate_gradient_along_node_links |
calc_aspect_at_cell_subtriangles
(grid, elevs='topographic__elevation', subtriangle_unit_normals=None, unit='degrees')[source]¶Get tuple of arrays of aspect of each of the eight cell subtriangles.
Aspect is returned as radians clockwise of north, unless input parameter units is set to ‘degrees’.
If subtriangle_unit_normals is provided the aspect will be calculated from these data.
If it is not, it will be derived from elevation data at the nodes, which can either be a string referring to a grid field (default: ‘topographic__elevation’), or an nnodes-long numpy array of the values themselves.
Parameters: | grid : ModelGrid
elevs : str or array (optional)
subtriangle_unit_normals : tuple of 8 (ncels, 3) arrays (optional)
unit : {‘degrees’, ‘radians’}
|
---|---|
Returns: | (a_ENE, a_NNE, a_NNW, a_WNW, a_WSW, a_SSW, a_SSE, a_ESE) :
|
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((3, 3))
>>> z = np.array([1., 0., 1., 0., 0., 0., 1., 0., 1.])
>>> eight_tris = mg.calc_unit_normals_at_cell_subtriangles(z)
>>> A = mg.calc_aspect_at_cell_subtriangles(z, eight_tris)
>>> A0 = mg.calc_aspect_at_cell_subtriangles(z)
>>> np.allclose(A, A0)
True
>>> type(A) is tuple
True
>>> len(A)
8
>>> len(A[0]) == mg.number_of_cells
True
>>> A0
(array([ 180.]), array([ 270.]), array([ 90.]), array([ 180.]),
array([ 0.]), array([ 90.]), array([ 270.]), array([ 0.]))
LLCATS: CINF SURF
calc_grad_across_cell_corners
(grid, vals, *args, **kwds)[source]¶Get gradients to diagonally opposite nodes.
Calculate gradient of the value field provided by node_values to the values at diagonally opposite nodes. The returned gradients are ordered as upper-right, upper-left, lower-left and lower-right.
Construction:
grid.calc_grad_across_cell_corners(node_values, [cell_ids],
out=None)
Parameters: | node_values : array_like or field name
cell_ids : array_like, optional
out : array_like, optional
|
---|---|
Returns: | (N, 4) ndarray
|
Examples
Create a grid with two cells.
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid(3, 4)
>>> x = np.array([1., 0., 0., 1.,
... 0., 0., 1., 1.,
... 3., 3., 3., 3.])
A decrease in quantity to a diagonal node is a negative gradient.
>>> from math import sqrt
>>> grid.calc_grad_across_cell_corners(x) * sqrt(2.)
array([[ 3., 3., 1., 0.],
[ 2., 2., -1., 0.]])
>>> grid = RasterModelGrid((3, 4), spacing=(3, 4))
>>> grid.calc_grad_across_cell_corners(x)
array([[ 0.6, 0.6, 0.2, 0. ],
[ 0.4, 0.4, -0.2, 0. ]])
LLCATS: CNINF GRAD
calc_grad_across_cell_faces
(grid, vals, *args, **kwds)[source]¶Get gradients across the faces of a cell.
Calculate gradient of the value field provided by node_values across each of the faces of the cells of a grid. The returned gradients are ordered as right, top, left, and bottom.
Note that the returned gradients are masked to exclude neighbor nodes which are closed. Beneath the mask is the value -1.
Construction:
grid.calc_grad_across_cell_faces(node_values, [cell_ids],
out=None)
Parameters: | node_values : array_like or field name
cell_ids : array_like, optional
out : array_like, optional
|
---|---|
Returns: | (N, 4) Masked ndarray
|
Examples
Create a grid with two cells.
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid(3, 4)
>>> x = np.array([0., 0., 0., 0.,
... 0., 0., 1., 1.,
... 3., 3., 3., 3.])
A decrease in quantity across a face is a negative gradient.
>>> grid.calc_grad_across_cell_faces(x)
masked_array(data =
[[ 1. 3. 0. 0.]
[ 0. 2. -1. -1.]],
mask =
False,
fill_value = 1e+20)
>>> grid = RasterModelGrid((3, 4), spacing=(2, 1))
>>> grid.calc_grad_across_cell_faces(x)
masked_array(data =
[[ 1. 1.5 0. 0. ]
[ 0. 1. -1. -0.5]],
mask =
False,
fill_value = 1e+20)
LLCATS: FINF GRAD
calc_grad_along_node_links
(grid, vals, *args, **kwds)[source]¶Get gradients along links touching a node.
Calculate gradient of the value field provided by node_values across each of the faces of the nodes of a grid. The returned gradients are ordered as right, top, left, and bottom. All returned values follow our standard sign convention, where a link pointing N or E and increasing in value is positive, a link pointing S or W and increasing in value is negative.
Note that the returned gradients are masked to exclude neighbor nodes which are closed. Beneath the mask is the value -1.
Construction:
grid.calc_grad_along_node_links(node_values, [cell_ids],
out=None)
Parameters: | node_values : array_like or field name
node_ids : array_like, optional
out : array_like, optional
|
---|---|
Returns: | (N, 4) Masked ndarray
|
Examples
Create a grid with nine nodes.
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid(3, 3)
>>> x = np.array([0., 0., 0.,
... 0., 1., 2.,
... 2., 2., 2.])
A decrease in quantity across a face is a negative gradient.
>>> grid.calc_grad_along_node_links(x)
masked_array(data =
[[-- -- -- --]
[-- 1.0 -- --]
[-- -- -- --]
[1.0 -- -- --]
[1.0 1.0 1.0 1.0]
[-- -- 1.0 --]
[-- -- -- --]
[-- -- -- 1.0]
[-- -- -- --]],
mask =
[[ True True True True]
[ True False True True]
[ True True True True]
[False True True True]
[False False False False]
[ True True False True]
[ True True True True]
[ True True True False]
[ True True True True]],
fill_value = 1e+20)
>>> grid = RasterModelGrid((3, 3), spacing=(2, 4))
>>> grid.calc_grad_along_node_links(x)
masked_array(data =
[[-- -- -- --]
[-- 0.5 -- --]
[-- -- -- --]
[0.25 -- -- --]
[0.25 0.5 0.25 0.5]
[-- -- 0.25 --]
[-- -- -- --]
[-- -- -- 0.5]
[-- -- -- --]],
mask =
[[ True True True True]
[ True False True True]
[ True True True True]
[False True True True]
[False False False False]
[ True True False True]
[ True True True True]
[ True True True False]
[ True True True True]],
fill_value = 1e+20)
LLCATS: NINF LINF GRAD
calc_grad_at_active_link
(grid, vals, *args, **kwds)[source]¶Calculate gradients over active links.
Deprecated since version 0.1: Use calc_grad_across_cell_faces()
or calc_grad_across_cell_corners()
instead
Calculates the gradient in quantity s at each active link in the grid. This is nearly identical to the method of the same name in ModelGrid, except that it uses a constant node spacing for link length to improve efficiency.
Note that a negative gradient corresponds to a lower node in the direction of the link.
Returns: | ndarray
|
---|
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid(4, 5, 1.0)
>>> u = [0., 1., 2., 3., 0.,
... 1., 2., 3., 2., 3.,
... 0., 1., 2., 1., 2.,
... 0., 0., 2., 2., 0.]
>>> grad = grid.calc_grad_at_active_link(u)
>>> grad
array([ 1., 1., -1.,
1., 1., -1., 1.,
-1., -1., -1.,
1., 1., -1., 1.,
-1., 0., 1.])
For greater speed, sending a pre-created numpy array as an argument avoids having to create a new one with each call:
>>> grad = np.empty(grid.number_of_active_links)
>>> rtn = grid.calc_grad_at_active_link(u, out=grad)
>>> grad
array([ 1., 1., -1.,
1., 1., -1., 1.,
-1., -1., -1.,
1., 1., -1., 1.,
-1., 0., 1.])
>>> rtn is grad
True
>>> grid = RasterModelGrid((3, 3), spacing=(1, 2))
>>> node_values = [0., 0., 0.,
... 1., 3., 1.,
... 2., 2., 2.]
>>> grid.calc_grad_at_active_link(node_values)
array([ 3., 1., -1., -1.])
This function is deprecated. Instead, use calc_grad_at_link
.
>>> grid = RasterModelGrid((3, 3), spacing=(1, 2))
>>> node_values = [0., 0., 0.,
... 1., 3., 1.,
... 2., 2., 2.]
>>> grid.calc_grad_at_link(node_values)[grid.active_links]
array([ 3., 1., -1., -1.])
LLCATS: LINF GRAD
calc_grad_at_link
(grid, vals, *args, **kwds)[source]¶Calculate gradients in node_values at links.
Construction:
calc_grad_at_link(grid, node_values, out=None)
Parameters: | grid : RasterModelGrid
node_values : array_like or field name
out : ndarray, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> from landlab import RasterModelGrid
>>> grid = RasterModelGrid((3, 3))
>>> node_values = [0., 0., 0.,
... 1., 3., 1.,
... 2., 2., 2.]
>>> grid.calc_grad_at_link(node_values)
array([ 0., 0., 1., 3., 1., 2., -2., 1., -1., 1., 0., 0.])
>>> out = np.empty(grid.number_of_links, dtype=float)
>>> rtn = grid.calc_grad_at_link(node_values, out=out)
>>> rtn is out
True
>>> out
array([ 0., 0., 1., 3., 1., 2., -2., 1., -1., 1., 0., 0.])
>>> grid = RasterModelGrid((3, 3), spacing=(1, 2))
>>> grid.calc_grad_at_link(node_values)
array([ 0., 0., 1., 3., 1., 1., -1., 1., -1., 1., 0., 0.])
>>> _ = grid.add_field('node', 'elevation', node_values)
>>> grid.calc_grad_at_link('elevation')
array([ 0., 0., 1., 3., 1., 1., -1., 1., -1., 1., 0., 0.])
LLCATS: LINF GRAD
calc_grad_at_patch
(grid, elevs='topographic__elevation', ignore_closed_nodes=True, subtriangle_unit_normals=None, slope_magnitude=None)[source]¶Calculate the components of the gradient of each raster patch.
Returns the mean gradient of the four possible patch subtriangles, in radians.
If ignore_closed_nodes is True, closed nodes do not affect gradient calculations. If more than one closed node is present in a patch, the patch gradients in both x and y directions are set to zero.
Parameters: | grid : RasterModelGrid
elevs : str or ndarray, optional
ignore_closed_nodes : bool
subtriangle_unit_normals : tuple of 4 (npatches, 3) arrays (optional)
slope_magnitude : array with size num_patches (optional)
|
---|---|
Returns: | gradient_tuple : (x_component_at_patch, y_component_at_patch)
|
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5))
>>> z = mg.node_y
>>> (x_grad, y_grad) = mg.calc_grad_at_patch(elevs=z)
>>> np.allclose(y_grad, np.pi/4.)
True
>>> np.allclose(x_grad, 0.)
True
>>> from landlab import CLOSED_BOUNDARY, FIXED_VALUE_BOUNDARY
>>> z = mg.node_x.copy()
>>> mg.set_closed_boundaries_at_grid_edges(True, True, True, True)
>>> mg.status_at_node[11] = CLOSED_BOUNDARY
>>> mg.status_at_node[[9, 2]] = FIXED_VALUE_BOUNDARY
>>> z[11] = 100. # this should get ignored now
>>> z[9] = 2. # this should be felt by patch 7 only
>>> z[2] = 1. # should be felt by patches 1 and 2
>>> xgrad, ygrad = mg.calc_grad_at_patch(
... elevs=z, ignore_closed_nodes=True)
>>> (xgrad.reshape((3, 4)) * 4./np.pi)[1, 1:]
array([ 1., 1., -1.])
>>> np.allclose(ygrad[1:3], xgrad[1:3])
True
LLCATS: PINF GRAD
calc_slope_at_cell_subtriangles
(grid, elevs='topographic__elevation', subtriangle_unit_normals=None)[source]¶Calculate the slope (positive magnitude of gradient) at each of the eight cell subtriangles.
Parameters: | grid : RasterModelGrid
elevs : str or ndarray, optional
subtriangle_unit_normals : tuple of 8 (ncells, 3) arrays (optional)
|
---|---|
Returns: | (s_ENE, s_NNE, s_NNW, s_WNW, s_WSW, s_SSW, s_SSE, s_ESE) :
|
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((3, 3))
>>> z = np.array([np.sqrt(3.), 0., 4./3.,
... 0., 0., 0.,
... 1., 0., 1./np.sqrt(3.)])
>>> eight_tris = mg.calc_unit_normals_at_cell_subtriangles(z)
>>> S = mg.calc_slope_at_cell_subtriangles(z, eight_tris)
>>> S0 = mg.calc_slope_at_cell_subtriangles(z)
>>> np.allclose(S, S0)
True
>>> type(S) is tuple
True
>>> len(S)
8
>>> len(S[0]) == mg.number_of_cells
True
>>> np.allclose(S[0], S[1])
True
>>> np.allclose(S[2], S[3])
True
>>> np.allclose(S[4], S[5])
True
>>> np.allclose(S[6], S[7])
True
>>> np.allclose(np.rad2deg(S[0])[0], 30.)
True
>>> np.allclose(np.rad2deg(S[2])[0], 45.)
True
>>> np.allclose(np.rad2deg(S[4])[0], 60.)
True
>>> np.allclose(np.cos(S[6])[0], 3./5.)
True
LLCATS: CINF GRAD
calc_slope_at_node
(grid, elevs='topographic__elevation', method='patch_mean', ignore_closed_nodes=True, return_components=False)[source]¶Array of slopes at nodes, averaged over neighboring patches.
Produces a value for node slope (i.e., mean gradient magnitude) at each node in a manner analogous to a GIS-style slope map. If method==’patch_mean’, it averages the gradient on each of the patches surrounding the node; if method==’Horn’, it returns the resolved slope direction. Directional information can still be returned through use of the return_components keyword. All values are returned in radians, including the components; take the tan to recover the rise/run.
Note that under these definitions, it is not always true that:
mag, cmp = mg.calc_slope_at_node(z)
mag**2 == cmp[0]**2 + cmp[1]**2 # only if method=='Horn'
If ignore_closed_nodes is False, all proximal elevation values will be used in the calculation. If True, only unclosed nodes are used.
This is a verion of this code specialized for a raster. It subdivides the four square patches around each node into subtriangles, in order to ensure more correct solutions that incorporate equally weighted information from all surrounding nodes on rough surfaces.
Parameters: | elevs : str or ndarray, optional
method : {‘patch_mean’, ‘Horn’}
ignore_closed_nodes : bool
return_components : bool
|
---|---|
Returns: | float array or length-2 tuple of float arrays
|
Examples
>>> import numpy as np
>>> from landlab import RadialModelGrid, RasterModelGrid
>>> mg = RasterModelGrid((5, 5), 1.)
>>> z = mg.node_x
>>> slopes = mg.calc_slope_at_node(elevs=z)
>>> np.allclose(slopes, np.pi / 4.)
True
>>> mg = RasterModelGrid((4, 5), 2.)
>>> z = - mg.node_y
>>> slope_mag, cmp = mg.calc_slope_at_node(elevs=z,
... return_components=True)
>>> np.allclose(slope_mag, np.pi / 4.)
True
>>> np.allclose(cmp[0], 0.)
True
>>> np.allclose(cmp[1], - np.pi / 4.)
True
>>> mg = RasterModelGrid((4, 4))
>>> z = mg.node_x ** 2 + mg.node_y ** 2
>>> slopes, cmp = mg.calc_slope_at_node(z, return_components=True)
>>> slopes
array([ 0.95531662, 1.10991779, 1.32082849, 1.37713803, 1.10991779,
1.20591837, 1.3454815 , 1.38904403, 1.32082849, 1.3454815 ,
1.39288142, 1.41562833, 1.37713803, 1.38904403, 1.41562833,
1.43030663])
>>> np.allclose(cmp[0].reshape((4, 4))[:, 0],
... cmp[1].reshape((4, 4))[0, :]) # test radial symmetry
True
LLCATS: NINF GRAD SURF
calc_slope_at_patch
(grid, elevs='topographic__elevation', ignore_closed_nodes=True, subtriangle_unit_normals=None)[source]¶Calculate the slope (positive magnitude of gradient) at raster patches.
Returns the mean of the slopes of the four possible patch subtriangles.
If ignore_closed_nodes is True, closed nodes do not affect slope calculations. If more than one closed node is present in a patch, the patch slope is set to zero.
Parameters: | grid : RasterModelGrid
elevs : str or ndarray, optional
ignore_closed_nodes : bool
subtriangle_unit_normals : tuple of 4 (npatches, 3) arrays (optional)
|
---|---|
Returns: | slopes_at_patch : n_patches-long array
|
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5))
>>> z = mg.node_x
>>> S = mg.calc_slope_at_patch(elevs=z)
>>> S.size == mg.number_of_patches
True
>>> np.allclose(S, np.pi/4.)
True
>>> z = mg.node_y**2
>>> mg.calc_slope_at_patch(elevs=z).reshape((3, 4))
array([[ 0.78539816, 0.78539816, 0.78539816, 0.78539816],
[ 1.24904577, 1.24904577, 1.24904577, 1.24904577],
[ 1.37340077, 1.37340077, 1.37340077, 1.37340077]])
>>> from landlab import CLOSED_BOUNDARY, FIXED_VALUE_BOUNDARY
>>> z = mg.node_x.copy()
>>> mg.set_closed_boundaries_at_grid_edges(True, True, True, True)
>>> mg.status_at_node[11] = CLOSED_BOUNDARY
>>> mg.status_at_node[9] = FIXED_VALUE_BOUNDARY
>>> z[11] = 100. # this should get ignored now
>>> z[9] = 2. # this should be felt by patch 7 only
>>> mg.calc_slope_at_patch(elevs=z, ignore_closed_nodes=True).reshape(
... (3, 4)) * 4./np.pi
array([[ 0., 0., 0., 0.],
[ 0., 1., 1., 1.],
[ 0., 0., 0., 0.]])
LLCATS: PINF GRAD
calc_unit_normals_at_cell_subtriangles
(grid, elevs='topographic__elevation')[source]¶Calculate unit normals on a cell.
Calculate the eight unit normal vectors <a, b, c> to the eight subtriangles of a four-cornered (raster) cell.
Parameters: | grid : RasterModelGrid
elevs : str or ndarray, optional
|
---|---|
Returns: | (n_ENE, n_NNE, n_NNW, n_WNW, n_WSW, n_SSW, n_SSE, n_ESE) :
|
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((3, 3))
>>> z = mg.node_x ** 2
>>> eight_tris = mg.calc_unit_normals_at_cell_subtriangles(z)
>>> type(eight_tris) is tuple
True
>>> len(eight_tris)
8
>>> eight_tris[0].shape == (mg.number_of_cells, 3)
True
>>> eight_tris
(array([[-0.9486833 , 0. , 0.31622777]]),
array([[-0.9486833 , 0. , 0.31622777]]),
array([[-0.70710678, 0. , 0.70710678]]),
array([[-0.70710678, 0. , 0.70710678]]),
array([[-0.70710678, 0. , 0.70710678]]),
array([[-0.70710678, 0. , 0.70710678]]),
array([[-0.9486833 , 0. , 0.31622777]]),
array([[-0.9486833 , 0. , 0.31622777]]))
LLCATS: CINF GRAD
calc_unit_normals_at_patch_subtriangles
(grid, elevs='topographic__elevation')[source]¶Calculate unit normals on a patch.
Calculate the four unit normal vectors <a, b, c> to the four possible subtriangles of a four-cornered (raster) patch.
Parameters: | grid : RasterModelGrid
elevs : str or ndarray, optional
|
---|---|
Returns: | (n_TR, n_TL, n_BL, n_BR) : each a num-patches x length-3 array
|
Examples
>>> import numpy as np
>>> from landlab import RasterModelGrid
>>> mg = RasterModelGrid((4, 5))
>>> z = mg.node_x ** 2
>>> four_tris = mg.calc_unit_normals_at_patch_subtriangles(z)
>>> type(four_tris) is tuple
True
>>> len(four_tris)
4
>>> np.allclose(four_tris[0], four_tris[1])
True
>>> np.allclose(four_tris[2], four_tris[3])
True
>>> np.allclose(four_tris[0], four_tris[2])
True
>>> np.allclose(np.square(four_tris[0]).sum(axis=1), 1.)
True
>>> four_tris[0]
array([[-0.70710678, 0. , 0.70710678],
[-0.9486833 , 0. , 0.31622777],
[-0.98058068, 0. , 0.19611614],
[-0.98994949, 0. , 0.14142136],
[-0.70710678, 0. , 0.70710678],
[-0.9486833 , 0. , 0.31622777],
[-0.98058068, 0. , 0.19611614],
[-0.98994949, 0. , 0.14142136],
[-0.70710678, 0. , 0.70710678],
[-0.9486833 , 0. , 0.31622777],
[-0.98058068, 0. , 0.19611614],
[-0.98994949, 0. , 0.14142136]])
LLCATS: PINF GRAD
Calculate slope aspects on a RasterModelGrid
.
calc_slope_aspect_of_nodes_horn
(*args, **kwargs)[source]¶Calculate slope and aspect.
Note
This method is deprecated as of Landlab version 1.0.
Use grid.calc_slope_at_node()
instead.
Note
THIS CODE HAS ISSUES (SN 25-Sept-14): This code didn’t perform well on a NS facing elevation profile. Please check slope_aspect_routines_comparison.py under landlabexamples before using this. Suggested alternative: calculate_slope_aspect_at_nodes_burrough
Calculates the local topographic slope (i.e., the down-dip slope, and presented as positive), and the aspect (dip direction in radians clockwise from north), at the given nodes, ids. All ids must be of core nodes.
This method uses the Horn 1981 algorithm, the one employed by many GIS packages. It should be significantly faster than alternative slope methods.
If ids is not provided, the slope will be returned for all core nodes.
vals is either the name of an existing grid field from which to draw topographic data, or an array of values to use. If an array of values is passed, it must be nnodes long. If vals is not provided, this method will default to trying to use the field “topographic__elevation”.
Parameters: | grid : RasterModelGrid
ids : array_like of int, optional
vals : str or ndarray, optional
|
---|---|
Returns: | (slope, aspect) : tuple of float
|
Examples
>>> from landlab import RasterModelGrid
>>> import numpy as np
>>> grid = RasterModelGrid((4, 5))
Create a south-facing slope.
>>> elevation = np.array([
... 0., 0., 0., 0., 0,
... 1., 1., 1., 1., 1,
... 2., 2., 2., 2., 2,
... 3., 3., 3., 3., 3])
>>> (slope, aspect) = calc_slope_aspect_of_nodes_horn(grid,
... vals=elevation)
>>> len(slope) == grid.number_of_core_nodes
True
>>> len(aspect) == grid.number_of_core_nodes
True
>>> slope
array([ 1., 1., 1., 1., 1., 1.])
>>> aspect * 180. / np.pi
array([ 180., 180., 180., 180., 180., 180.])
Make the slope north-facing by multiplying elevations by -1. The slopes will still be positive but the aspects will change.
>>> elevation *= -1
>>> (slope, aspect) = calc_slope_aspect_of_nodes_horn(grid,
... vals=elevation)
>>> slope
array([ 1., 1., 1., 1., 1., 1.])
>>> aspect * 180. / np.pi
array([ 0., 0., 0., 0., 0., 0.])
Double the slope and make it west-facing.
>>> elevation = np.array([
... 0., 1., 2., 3., 4.,
... 0., 1., 2., 3., 4.,
... 0., 1., 2., 3., 4.,
... 0., 1., 2., 3., 4.])
>>> elevation *= 2.
>>> (slope, aspect) = calc_slope_aspect_of_nodes_horn(grid,
... vals=elevation)
>>> slope
array([ 2., 2., 2., 2., 2., 2.])
>>> aspect * 180. / np.pi
array([ 270., 270., 270., 270., 270., 270.])
Make the slope east-facing by multiplying elevations by -1. The slopes will still be positive but the aspects will change.
>>> elevation *= -1.
>>> (slope, aspect) = calc_slope_aspect_of_nodes_horn(grid,
... vals=elevation)
>>> slope
array([ 2., 2., 2., 2., 2., 2.])
>>> aspect * 180. / np.pi
array([ 90., 90., 90., 90., 90., 90.])
LLCATS: DEPR NINF SURF
Calculate steepest descent on a raster grid.
_calc_steepest_descent_across_adjacent_cells (...) |
Get steepest gradient to neighbor and diagonal cells. |
_calc_steepest_descent_across_cell_corners (...) |
Get steepest gradient to the diagonals of a cell. |
_calc_steepest_descent_across_cell_faces (...) |
Get steepest gradient across the faces of a cell. |
set_status_at_node_on_edges
(grid, right=None, top=None, left=None, bottom=None)[source]¶Set node status on grid edges.
Parameters: | grid : RasterModelGrid
right : int, optional
top : int, optional
left : int, optional
bottom : int, optional
|
---|
Examples
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> grid = RasterModelGrid((3, 4))
>>> grid.status_at_node
array([1, 1, 1, 1,
1, 0, 0, 1,
1, 1, 1, 1], dtype=int8)
>>> grid.set_status_at_node_on_edges(right=CLOSED_BOUNDARY)
>>> grid.status_at_node
array([1, 1, 1, 4,
1, 0, 0, 4,
1, 1, 1, 4], dtype=int8)
>>> from landlab import FIXED_GRADIENT_BOUNDARY
>>> grid = RasterModelGrid((3, 4))
The status of a corner is set along with its clockwise edge. That is, if setting the status for the top and right edges, the upper-right corner has the status of the right edge.
>>> grid.set_status_at_node_on_edges(top=CLOSED_BOUNDARY,
... right=FIXED_GRADIENT_BOUNDARY)
>>> grid.status_at_node
array([1, 1, 1, 2,
1, 0, 0, 2,
4, 4, 4, 2], dtype=int8)
In the above example, if you wanted the corner to have the status of the top edge, you need to make two calls to set_status_at_node_on_edges,
>>> grid = RasterModelGrid((3, 4))
>>> grid.set_status_at_node_on_edges(right=FIXED_GRADIENT_BOUNDARY)
>>> grid.set_status_at_node_on_edges(top=CLOSED_BOUNDARY)
>>> grid.status_at_node
array([1, 1, 1, 2,
1, 0, 0, 2,
4, 4, 4, 4], dtype=int8)
An example that sets all of the edges shows how corners are set.
>>> grid.set_status_at_node_on_edges(right=1, top=2, left=3, bottom=4)
>>> grid.status_at_node
array([3, 4, 4, 4,
3, 0, 0, 1,
2, 2, 2, 1], dtype=int8)
LLCATS: BC
calculate_flux_divergence_at_nodes
(grid, active_link_flux, out=None)[source]¶Net flux into or out of nodes.
Same as calculate_flux_divergence_at_core_cells, but works with and returns a list of net unit fluxes that corresponds to all nodes, rather than just core nodes.
Parameters: grid : RasterModelGrid
Input grid.
active_link_flux : array_like
Flux values at links.
out : ndarray, optional
Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output.
See also
calculate_flux_divergence_at_active_cells
Notes
Note that we DO compute net unit fluxes at boundary nodes (even though these don’t have active cells associated with them, and often don’t have cells of any kind, because they are on the perimeter). It’s up to the user to decide what to do with these boundary values.
Examples
Calculate the gradient of values at a grid’s nodes.
>>> from landlab import RasterModelGrid >>> rmg = RasterModelGrid((4, 5), spacing=1.0) >>> u = np.array([0., 1., 2., 3., 0., ... 1., 2., 3., 2., 3., ... 0., 1., 2., 1., 2., ... 0., 0., 2., 2., 0.]) >>> grad = rmg.calc_grad_at_link(u)[rmg.active_links] >>> grad array([ 1., 1., -1., 1., 1., -1., 1., -1., -1., -1., 1., 1., -1., 1., -1., 0., 1.])Calculate the divergence of the gradients at each node.
>>> flux = - grad # downhill flux proportional to gradient >>> rmg.calculate_flux_divergence_at_nodes(flux) ... array([ 0., -1., -1., 1., 0., -1., 2., 4., -2., 1., -1., 0., 1., -4., 1., 0., -1., 0., 1., 0.])If calculate_gradients_at_nodes is called inside a loop, you can improve speed by creating an array outside the loop. For example, do this once, before the loop:
>>> df = rmg.zeros(centering='node') # outside loop >>> rmg.number_of_nodes 20Then do this inside the loop so that the function will not have to create the df array but instead puts values into the df array.
>>> df = rmg.calculate_flux_divergence_at_nodes(flux, out=df)>>> grid = RasterModelGrid((4, 5), spacing=(1, 2)) >>> u = np.array([0., 1., 2., 3., 0., ... 1., 2., 3., 2., 3., ... 0., 1., 2., 1., 2., ... 0., 0., 2., 2., 0.]) >>> grad = grid.calc_grad_at_link(2 * u)[grid.active_links] >>> grad array([ 2., 2., -2., 1., 1., -1., 1., -2., -2., -2., 1., 1., -1., 1., -2., 0., 2.]) >>> grid.calculate_flux_divergence_at_nodes(- grad) ... array([ 0., -1., -1., 1., 0., -1., 2., 4., -2., 1., -1., 0., 1., -4., 1., 0., -1., 0., 1., 0.])
calculate_slope_aspect_bfp
(xs, ys, zs)[source]¶Calculate slope and aspect.
Code author: Katy Barnhart <katherine.barnhart@colorado.edu>
Fits a plane to the given N points with given xs, ys, and zs values using single value decomposition.
Returns a tuple of (slope, aspect) based on the normal vector to the best fit plane.
Note
This function does not check if the points fall on a line, rather than a plane.
corner_node_at_cell
(grid, corner_ids[, cell_ids])[source]¶Return an array of the node ids for diagonal neighbors of cell_id cells. corner_ids is an index into the corners of a cell as measured clockwise starting from the southeast.
If cell_ids is not given, return neighbors for all cells in the grid.
Parameters: grid : RasterModelGrid
Input grid.
corner_ids : array_like
IDs of the corner nodes.
cell_ids : array_like, optional
IDs of cell about which to get corners
Examples
>>> from landlab import RasterModelGrid >>> from landlab.grid.raster_funcs import corner_node_at_cell >>> grid = RasterModelGrid(4, 5, 1.0) >>> corner_node_at_cell(grid, 0, 0) array([2])Get the lower-right and the the upper-left corners for all the cells.
>>> corner_node_at_cell(grid, 0) array([2, 3, 4, 7, 8, 9]) >>> corner_node_at_cell(grid, 2) array([10, 11, 12, 15, 16, 17])As an alternative to the above, use fancy-indexing to get both sets of corners with one call.
>>> corner_node_at_cell(grid, np.array([0, 2]), [1, 4]) array([[ 3, 11], [ 8, 16]])
find_nearest_node
(rmg, coords, mode='raise')[source]¶Find the node nearest a point.
Find the index to the node nearest the given x, y coordinates. Coordinates are provided as numpy arrays in the coords tuple. coords is tuple of coordinates, one for each dimension.
The mode keyword to indicate what to do if a point is outside of the grid. Valid choices are the same as that used with the numpy function ravel_multi_index.
A point is considered to be outside of the grid if it is outside the perimeter of the grid by one half of the grid spacing.
Parameters: rmg : RasterModelGrid
The source grid.
coords : tuple
Coordinates of point as (x, y)
mode : {‘raise’, ‘wrap’, ‘clip’}, optional
Action to take if a point is outside of the grid.
Returns: array_like :
Indices of the nodes nearest the given coordinates.
Examples
Create a grid of 4 by 5 nodes with unit spacing.
>>> import landlab >>> from landlab.grid.raster_funcs import find_nearest_node >>> rmg = landlab.RasterModelGrid(4, 5)The points can be either a tuple of scalars or of arrays.
>>> find_nearest_node(rmg, (0.2, 0.6)) 5 >>> find_nearest_node(rmg, (np.array([1.6, 3.6]), np.array([2.3, .7]))) array([12, 9])The mode keyword indicates what to do if a point is outside of the grid.
>>> find_nearest_node(rmg, (-0.6, 0.6), mode='raise') Traceback (most recent call last): ... ValueError: invalid entry in coordinates array >>> find_nearest_node(rmg, (-0.6, 0.6), mode='clip') 5 >>> find_nearest_node(rmg, (-0.6, 0.6), mode='wrap') 9
is_coord_on_grid
(rmg, coords, axes=(0, 1))[source]¶Check if coordinates are contained on a grid.
Parameters: rmg : RasterModelGrid
Source grid.
coords : tuple
Coordinates of point as (x, y)
axes : tuple, optional
Check bounds only on a particular axis
Examples
Create a grid that ranges from x=0 to x=4, and y=0 to y=3.
>>> from landlab import RasterModelGrid >>> from landlab.grid.raster_funcs import is_coord_on_grid >>> grid = RasterModelGrid(4, 5) >>> is_coord_on_grid(grid, (3.999, 2.999)) TrueCheck two points with one call. Numpy broadcasting rules apply for the point coordinates.
>>> is_coord_on_grid(grid, ([3.9, 4.1], 2.9)) array([ True, False], dtype=bool)>>> is_coord_on_grid(grid, ([3.9, 4.1], 2.9), axes=(0, )) array([ True, True], dtype=bool)
neighbor_active_link_at_cell
(grid, link_ids[, cell_ids])[source]¶Return an array of the active link ids for neighbors of cell_id cells. link_ids is an index into the links of a cell as measured clockwise starting from the south.
If cell_ids is not given, return neighbors for all cells in the grid.
Parameters: grid : RasterModelGrid
Source grid.
link_inds : array_like
IDs of links
cell_ids : array_like, optional
IDs of cells for which to get links
neighbor_node_at_cell
(grid, neighbor_ids[, cell_ids])[source]¶Return an array of the node ids for neighbors of cell_id cells. neighbor_ids is an index into the neighbors of a cell as measured clockwise starting from the south.
If cell_ids is not given, return neighbors for all cells in the grid.
Parameters: grid : RasterModelGrid
Input grid.
neighbor_ids : array_like
IDs of the neighbor nodes.
cell_ids : array_like, optional
IDs of cell about which to get neighbors.
Returns: ndarray
Node IDs for given neighbors of cells.
Examples
>>> from landlab import RasterModelGrid >>> from landlab.grid.raster_funcs import neighbor_node_at_cell >>> grid = RasterModelGrid(4, 5, 1.0) >>> neighbor_node_at_cell(grid, 0, 0) array([1])Get the lower and the the upper neighbors for all the cells.
>>> neighbor_node_at_cell(grid, 0) array([1, 2, 3, 6, 7, 8]) >>> neighbor_node_at_cell(grid, 2) array([11, 12, 13, 16, 17, 18])As an alternative to the above, use fancy-indexing to get both sets of neighbors with one call.
>>> neighbor_node_at_cell(grid, np.array([0, 2]), [1, 4]) array([[ 2, 12], [ 7, 17]])
Inherits from ModelGrid and adds:
Python implementation of VoronoiDelaunayGrid, a class used to create and manage unstructured, irregular grids for 2D numerical models.
Do NOT add new documentation here. Grid documentation is now built in a semi- automated fashion. To modify the text seen on the web, edit the files docs/text_for_[gridfile].py.txt.
VoronoiDelaunayGrid
(x=None, y=None, reorient_links=True, **kwds)[source]¶Bases: landlab.grid.base.ModelGrid
This inherited class implements an unstructured grid in which cells are Voronoi polygons and nodes are connected by a Delaunay triangulation. Uses scipy.spatial module to build the triangulation.
Create an unstructured grid from points whose coordinates are given by the arrays x, y.
Parameters: | x : array_like
y : array_like
reorient_links (optional) : bool
|
---|---|
Returns: | VoronoiDelaunayGrid
|
Examples
>>> from numpy.random import rand
>>> from landlab.grid import VoronoiDelaunayGrid
>>> x, y = rand(25), rand(25)
>>> vmg = VoronoiDelaunayGrid(x, y) # node_x_coords, node_y_coords
>>> vmg.number_of_nodes
25
>>> import numpy as np
>>> x = [0, 0.1, 0.2, 0.3,
... 1, 1.1, 1.2, 1.3,
... 2, 2.1, 2.2, 2.3,]
>>> y = [0, 1, 2, 3,
... 0, 1, 2, 3,
... 0, 1, 2, 3]
>>> vmg = VoronoiDelaunayGrid(x, y)
>>> vmg.node_x
array([ 0. , 1. , 2. ,
0.1, 1.1, 2.1,
0.2, 1.2, 2.2,
0.3, 1.3, 2.3])
>>> vmg.node_y
array([ 0., 0., 0.,
1., 1., 1.,
2., 2., 2.,
3., 3., 3.])
links_at_patch
¶Returns the links forming each patch.
Examples
>>> from landlab import HexModelGrid
>>> mg = HexModelGrid(3, 2)
>>> mg.links_at_patch
array([[ 3, 2, 0],
[ 5, 1, 2],
[ 6, 3, 4],
[ 8, 7, 5],
[10, 9, 6],
[11, 8, 9]])
LLCATS: LINF PINF CONN
nodes_at_patch
¶Get the four nodes at the corners of each patch in a regular grid.
LLCATS: PINF NINF CONN
number_of_patches
¶Number of patches.
Returns the number of patches over the grid.
LLCATS: PINF
patches_at_link
¶Returns the patches adjoined to each link.
Examples
>>> from landlab import HexModelGrid
>>> mg = HexModelGrid(3, 2)
>>> mg.patches_at_link
array([[ 0, -1],
[ 1, -1],
[ 0, 1],
[ 0, 2],
[ 2, -1],
[ 1, 3],
[ 2, 4],
[ 3, -1],
[ 3, 5],
[ 4, 5],
[ 4, -1],
[ 5, -1]])
LLCATS: PINF LINF CONN
patches_at_node
¶Return a (nnodes, max_voronoi_polygon_sides) array of patches at nodes.
The patches are returned in LL standard order (ccw from E), with any nonexistent patches recorded after the ids of existing faces. Nonexistent patches are ID’ed as -1.
Examples
>>> from landlab import HexModelGrid
>>> mg = HexModelGrid(3, 3)
>>> mg.patches_at_node
array([[ 0, 2, -1, -1, -1, -1],
[ 1, 3, 0, -1, -1, -1],
[ 4, 1, -1, -1, -1, -1],
[ 5, 2, -1, -1, -1, -1],
[ 6, 8, 5, 2, 0, 3],
[ 7, 9, 6, 3, 1, 4],
[ 7, 4, -1, -1, -1, -1],
[ 5, 8, -1, -1, -1, -1],
[ 8, 6, 9, -1, -1, -1],
[ 9, 7, -1, -1, -1, -1]])
LLCATS: NINF PINF CONN
save
(path, clobber=False)[source]¶Save a grid and fields.
This method uses cPickle to save a Voronoi grid as a cPickle file. At the time of coding, this is the only convenient output format for Voronoi grids, but support for netCDF is likely coming.
All fields will be saved, along with the grid.
The recommended suffix for the save file is ‘.grid’. This will be added to your save if you don’t include it.
This method is equivalent to
save_grid()
, and
load_grid()
can be used to
load these files.
Caution: Pickling can be slow, and can produce very large files. Caution 2: Future updates to Landlab could potentially render old saves unloadable.
Parameters: | path : str
clobber : bool (defaults to false)
|
---|
Examples
>>> from landlab import VoronoiDelaunayGrid
>>> import numpy as np
>>> import os
>>> x = np.random.rand(20)
>>> y = np.random.rand(20)
>>> vmg = VoronoiDelaunayGrid(x,y)
>>> vmg.save('./mytestsave.grid')
>>> os.remove('mytestsave.grid') #to remove traces of this test
LLCATS: GINF
calculate_link_lengths
(pts, link_from, link_to)[source]¶Calculates and returns length of links between nodes.
Parameters: | pts : Nx2 numpy array containing (x,y) values link_from : 1D numpy array containing index numbers of nodes at starting
link_to : 1D numpy array containing index numbers of nodes at ending point
|
---|---|
Returns: | out : ndarray
|
Examples
>>> import numpy as np
>>> from landlab.grid.voronoi import calculate_link_lengths
>>> pts = np.array([[0.,0.],[3.,0.],[3.,4.]]) # 3:4:5 triangle
>>> lfrom = np.array([0,1,2])
>>> lto = np.array([1,2,0])
>>> calculate_link_lengths(pts, lfrom, lto)
array([ 3., 4., 5.])
simple_poly_area
(x, y)[source]¶Calculates and returns the area of a 2-D simple polygon.
Input vertices must be in sequence (clockwise or counterclockwise). x and y are arrays that give the x- and y-axis coordinates of the polygon’s vertices.
Parameters: | x : ndarray
y : ndarray
|
---|---|
Returns: | out : float
|
Examples
>>> import numpy as np
>>> from landlab.grid.voronoi import simple_poly_area
>>> x = np.array([3., 1., 1., 3.])
>>> y = np.array([1.5, 1.5, 0.5, 0.5])
>>> simple_poly_area(x, y)
2.0
If the input coordinate arrays are 2D, calculate the area of each polygon. Note that when used in this mode, all polygons must have the same number of vertices, and polygon vertices are listed column-by-column.
>>> x = np.array([[ 3., 1., 1., 3.],
... [-2., -2., -1., -1.]]).T
>>> y = np.array([[1.5, 1.5, 0.5, 0.5],
... [ 0., 1., 2., 0.]]).T
>>> simple_poly_area(x, y)
array([ 2. , 1.5])
Inherits from VoronoiDelauneyGrid and adds:
Python implementation of HexModelGrid, a grid class used to create and manage structured Voronoi-Delaunay grids for 2D numerical models.
Do NOT add new documentation here. Grid documentation is now built in a semi- automated fashion. To modify the text seen on the web, edit the files docs/text_for_[gridfile].py.txt.
HexModelGrid
(base_num_rows=0, base_num_cols=0, dx=1.0, orientation='horizontal', shape='hex', reorient_links=True, **kwds)[source]¶Bases: landlab.grid.voronoi.VoronoiDelaunayGrid
A grid of hexagonal cells.
This inherited class implements a regular 2D grid with hexagonal cells and triangular patches. It is a special type of VoronoiDelaunay grid in which the initial set of points is arranged in a triangular/hexagonal lattice.
Parameters: | base_num_rows : int
base_num_cols : int
dx : float, optional
orientation : string, optional
shape : string, optional
|
---|---|
Returns: | HexModelGrid
|
Examples
Create a hex grid with 2 rows of nodes. The first and third rows will have 2 nodes, and the second nodes.
>>> from landlab import HexModelGrid
>>> hmg = HexModelGrid(3, 2, 1.0)
>>> hmg.number_of_nodes
7
hexplot
(data, data_label=None, color_map=None)[source]¶Create a plot of the grid elements.
Creates a plot of the grid and one node-data field, showing hexagonal cells colored by values in the field.
Parameters: | data : str or node array (1d numpy array with number_of_nodes entries)
data_label : str, optional
color_map : matplotlib colormap object, None
|
---|
See also
plot.imshow_grid
LLCATS
nodes_at_bottom_edge
¶Get nodes along the bottom edge of a grid, if grid is rectangular.
Examples
>>> import numpy as np
>>> from landlab import HexModelGrid
>>> grid = HexModelGrid(3, 4, shape='rect')
>>> grid.nodes_at_bottom_edge
array([0, 1, 2, 3])
LLCATS: NINF BC SUBSET
nodes_at_left_edge
¶Get nodes along the left edge of a grid, if grid is rectangular.
Examples
>>> import numpy as np
>>> from landlab import HexModelGrid
>>> grid = HexModelGrid(3, 4, shape='rect')
>>> grid.nodes_at_left_edge
array([0, 4, 8])
LLCATS: NINF BC SUBSET
nodes_at_right_edge
¶Get nodes along the right edge of a grid, if grid is rectangular.
Examples
>>> import numpy as np
>>> from landlab import HexModelGrid
>>> grid = HexModelGrid(3, 4, shape='rect')
>>> grid.nodes_at_right_edge
array([ 3, 7, 11])
LLCATS: NINF BC SUBSET
nodes_at_top_edge
¶Get nodes along the top edge of a grid, if grid is rectangular.
Examples
>>> import numpy as np
>>> from landlab import HexModelGrid
>>> grid = HexModelGrid(3, 4, shape='rect')
>>> grid.nodes_at_top_edge
array([ 8, 9, 10, 11])
LLCATS: NINF BC SUBSET
number_of_node_columns
¶Number of node columns hex grid.
Number of node columns in a rectangular-shaped and/or vertically oriented hex grid.
Returns the number of columns, including boundaries.
Notes
Will generate an error if called with a hex-shaped, horizontally aligned grid.
Examples
>>> from landlab import HexModelGrid
>>> grid = HexModelGrid(5, 5, shape='rect')
>>> grid.number_of_node_columns
5
LLCATS: GINF NINF
number_of_node_rows
¶Number of node rows in a rectangular-shaped and/or horizontally oriented hex grid.
Returns the number of rows, including boundaries.
Notes
Will generate an error if called with a hex-shaped, vertically aligned grid.
Examples
>>> from landlab import HexModelGrid
>>> grid = HexModelGrid(5, 5, shape='rect')
>>> grid.number_of_node_rows
5
LLCATS: GINF NINF
from_dict
(param_dict)[source]¶Create a HexModelGrid from the dictionary-like object, param_dict. Required keys of the dictionary are NUM_ROWS, NUM_COLS. Raises a KeyError if either of these are missing. If GRID_SPACING is given, use it as the HexModelGrid dx parameter, otherwise default to unit spacing.
Inherits from VoronoiDelauneyGrid and adds:
Python implementation of RadialModelGrid, a grid class used to create and manage structured Voronoi-Delaunay grids for 2D numerical models.
Do NOT add new documentation here. Grid documentation is now built in a semi- automated fashion. To modify the text seen on the web, edit the files docs/text_for_[gridfile].py.txt.
RadialModelGrid
(num_shells=0, dr=1.0, origin_x=0.0, origin_y=0.0, **kwds)[source]¶Bases: landlab.grid.voronoi.VoronoiDelaunayGrid
Grid of concentric circles.
This inherited class implements a circular grid in which grid nodes are placed at regular radial and semi-regular arc-wise intervals. That is, if the radial spacing between shells is dr, the nodes are placed around the circular shell at regular intervals that get as close as possible to dr. The points are then arranged in a Delaunay triangulation with Voronoi cells. Within each ring, nodes are numbered according to Landlab convention, from the first node counterclockwise of east. Numbering begins at the centermost node and works outwards through the rings.
Parameters: | num_shells : int
dr : float, optional
origin_x : float, optional
origin_y : float, optional
|
---|---|
Returns: | RadialModelGrid
|
Examples
A grid with just one ring will have a node at the origin surrounded by six other nodes.
>>> from landlab import RadialModelGrid
>>> omg = RadialModelGrid(num_shells=1, dr=1., origin_x=0., origin_y=0.)
>>> omg.number_of_nodes
7
>>> omg.number_of_cells
1
A second rings will have 13 nodes.
>>> omg = RadialModelGrid(2)
>>> omg.number_of_nodes
20
number_of_nodes_in_shell
¶Number of nodes in each shell.
Returns: | int
LLCATS: GINF NINF |
---|
number_of_shells
¶Number of node shells in grid.
Returns: | int
LLCATS: GINF |
---|
radius_at_node
¶Distance for center node to each node.
Returns: | ndarray of float
>>> mg = RadialModelGrid(num_shells=2)
>>> mg.radius_at_node
array([ 2., 2., 2., 2., 2., 1., 1., 2., 0., 1., 1., 2., 2.,
LLCATS: NINF MEAS |
---|
shell_spacing
¶Fixed distance between shells.
LLCATS: DEPR GINF MEAS
spacing_of_shells
¶Fixed distance between shells.
LLCATS: GINF MEAS