Defines the base component class from which Landlab components inherit.
from_path (grid, path) |
Create a component from an input file. |
landlab.core.model_component.Component.name |
|
units |
|
landlab.core.model_component.Component.definitions |
|
input_var_names |
|
output_var_names |
|
optional_var_names |
|
var_type (name) |
Returns the dtype of a field (float, int, bool, str...), if declared. |
var_units (name) |
Get the units of a particular field. |
var_definition (name) |
Get a description of a particular field. |
landlab.core.model_component.Component.var_mapping |
|
var_loc (name) |
Location where a particular variable is defined. |
var_help (name) |
Print a help message for a particular field. |
initialize_output_fields () |
Create fields for a component based on its input and output var names. |
initialize_optional_output_fields () |
Create fields for a component based on its optional field outputs, if declared in _optional_var_names. |
shape |
Return the grid shape attached to the component, if defined. |
grid |
Return the grid attached to the component. |
coords |
Return the coordinates of nodes on grid attached to the component. |
imshow (name, \*\*kwds) |
Plot data on the grid attached to the component. |
Component
(grid, map_vars=None, **kwds)[source]¶Bases: object
Defines the base component class from which Landlab components inherit.
from_path (grid, path) |
Create a component from an input file. |
landlab.core.model_component.Component.name |
|
units |
|
landlab.core.model_component.Component.definitions |
|
input_var_names |
|
output_var_names |
|
optional_var_names |
|
var_type (name) |
Returns the dtype of a field (float, int, bool, str...), if declared. |
var_units (name) |
Get the units of a particular field. |
var_definition (name) |
Get a description of a particular field. |
landlab.core.model_component.Component.var_mapping |
|
var_loc (name) |
Location where a particular variable is defined. |
var_help (name) |
Print a help message for a particular field. |
initialize_output_fields () |
Create fields for a component based on its input and output var names. |
initialize_optional_output_fields () |
Create fields for a component based on its optional field outputs, if declared in _optional_var_names. |
shape |
Return the grid shape attached to the component, if defined. |
grid |
Return the grid attached to the component. |
coords |
Return the coordinates of nodes on grid attached to the component. |
imshow (name, \*\*kwds) |
Plot data on the grid attached to the component. |
coords
¶Return the coordinates of nodes on grid attached to the component.
definitions
¶classmethod(function) -> method
Convert a function to be a class method.
A class method receives the class as implicit first argument, just like an instance method receives the instance. To declare a class method, use this idiom:
- class C:
@classmethod def f(cls, arg1, arg2, ...):
...
It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The instance is ignored except for its class. If a class method is called for a derived class, the derived class object is passed as the implied first argument.
Class methods are different than C++ or Java static methods. If you want those, see the staticmethod builtin.
from_path
(grid, path)[source]¶Create a component from an input file.
Parameters: | grid : ModelGrid
path : str or file_like
|
---|---|
Returns: | Component
|
grid
¶Return the grid attached to the component.
initialize_optional_output_fields
()[source]¶Create fields for a component based on its optional field outputs, if declared in _optional_var_names.
This method will create new fields (without overwrite) for any fields output by the component as optional. New fields are initialized to zero. New fields are created as arrays of floats, unless the component also contains the specifying property _var_type.
initialize_output_fields
()[source]¶Create fields for a component based on its input and output var names.
This method will create new fields (without overwrite) for any fields output by, but not supplied to, the component. New fields are initialized to zero. Ignores optional fields, if specified by _optional_var_names. New fields are created as arrays of floats, unless the component also contains the specifying property _var_type.
input_var_names
= ()¶name
¶classmethod(function) -> method
Convert a function to be a class method.
A class method receives the class as implicit first argument, just like an instance method receives the instance. To declare a class method, use this idiom:
- class C:
@classmethod def f(cls, arg1, arg2, ...):
...
It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The instance is ignored except for its class. If a class method is called for a derived class, the derived class object is passed as the implied first argument.
Class methods are different than C++ or Java static methods. If you want those, see the staticmethod builtin.
optional_var_names
= ()¶output_var_names
= ()¶shape
¶Return the grid shape attached to the component, if defined.
units
= ()¶var_definition
(name)[source]¶Get a description of a particular field.
Parameters: | name : str
|
---|---|
Returns: | tuple of (name, description)
|
var_help
(name)[source]¶Print a help message for a particular field.
Parameters: | name : str
|
---|
var_loc
(name)[source]¶Location where a particular variable is defined.
Parameters: | name : str
|
---|---|
Returns: | str
|
var_mapping
¶classmethod(function) -> method
Convert a function to be a class method.
A class method receives the class as implicit first argument, just like an instance method receives the instance. To declare a class method, use this idiom:
- class C:
@classmethod def f(cls, arg1, arg2, ...):
...
It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The instance is ignored except for its class. If a class method is called for a derived class, the derived class object is passed as the implied first argument.
Class methods are different than C++ or Java static methods. If you want those, see the staticmethod builtin.
Read input variables for landlab components.
The Model Parameter Dictionary is a tool for numerical modelers to easily read and access model parameters from a simple formatted input (text) file. Each parameter has a KEY, which identifies the parameter, and a VALUE, which can be a number or a string. A ModelParameterDictionary object reads model parameters from an input file to a Dictionary, and provides functions for the user to look up particular parameters by key name.
The format of the input file looks like:
>>> from six import StringIO
>>> param_file = StringIO('''
... PI: the text "PI" is an example of a KEY
... 3.1416
... AVOGADROS_NUMBER: this is another
... 6.022e23
... FAVORITE_FRUIT: yet another
... mangoes
... NUMBER_OF_MANGO_WALKS: this one is an integer
... 4
... ALSO_LIKES_APPLES: this is a boolean
... true
... ''')
Example code that reads these parameters from a file called myinputs.txt:
>>> from landlab import ModelParameterDictionary
>>> my_param_dict = ModelParameterDictionary()
>>> my_param_dict.read_from_file(param_file)
>>> pi = my_param_dict.read_float('PI')
>>> avogado = my_param_dict.read_float('AVOGADROS_NUMBER')
>>> fruit = my_param_dict.read_string('FAVORITE_FRUIT')
>>> nmang = my_param_dict.read_int('NUMBER_OF_MANGO_WALKS')
>>> apples_ok = my_param_dict.read_bool('ALSO_LIKES_APPLES')
As in Python, hash marks (#) denote comments. The rules are that each key must have one and only one parameter value, and each value must appear on a separate line immediately below the key line.
Also available are functions to read input parameters from the command line (e.g., read_float_cmdline( ‘PI’ ) )
Error
[source]¶Bases: exceptions.Exception
Base class for exceptions raised from this module.
MissingKeyError
(key)[source]¶Bases: landlab.core.model_parameter_dictionary.Error
Error to indicate a missing parameter key.
Raise this error if the parameter dictionary file does not contain a requested key.
ModelParameterDictionary
(from_file=None, auto_type=False)[source]¶Bases: dict
Model parameter file as specified as key/value pairs.
Reads model parameters from an input file to a dictionary and provides functions for the user to look up particular parameters by key name.
If the keyword auto_type is True, then guess at the type for each value. Use from_file to read in a parameter file from a file-like object or a file with the given file name.
Parameters: | from_file : str or file_like, optional
auto_type : boolean, optional
|
---|
Examples
Create a file-like object that contains a model parameter dictionary.
>>> from six import StringIO
>>> test_file = StringIO('''
... INT_VAL:
... 1
... DBL_VAL:
... 1.2
... BOOL_VAL:
... true
... INT_ARRAY:
... 1,2,3
... DBL_ARRAY:
... 1.,2.,3.
... STR_VAL:
... landlab is awesome!
... ''')
Create a ModelParameterDictionary, fill it with values from the parameter dictionary, and try to convert each value string to its intended type.
>>> from landlab import ModelParameterDictionary
>>> params = ModelParameterDictionary(auto_type=True, from_file=test_file)
The returned ModelParameterDictionary can now be used just like a regular Python dictionary to get items, keys, etc.
>>> sorted(params.keys())
['BOOL_VAL', 'DBL_ARRAY', 'DBL_VAL', 'INT_ARRAY', 'INT_VAL', 'STR_VAL']
>>> params['INT_VAL']
1
>>> params['DBL_VAL']
1.2
>>> params['BOOL_VAL']
True
>>> params['STR_VAL']
'landlab is awesome!'
Lines containing commas are converted to numpy arrays. The type of the array is determined by the values.
>>> isinstance(params['DBL_ARRAY'], np.ndarray)
True
>>> params['INT_ARRAY']
array([1, 2, 3])
>>> params['DBL_ARRAY']
array([ 1., 2., 3.])
get
(key, [default, ]ptype=str)[source]¶Get a value by key name.
Get a value from a model parameter dictionary. Use the ptype keyword to convert the value to a given type. ptype is a function that converts the retreived value to the desired value. If a second argument after key is provided, use it as a default in case key is not contained in the ModelParameterDictionary.
Parameters: | key : str
default : str or number, optional
ptype : str, optional
|
---|
Examples
>>> from six import StringIO
>>> from landlab import ModelParameterDictionary
>>> params = ModelParameterDictionary(StringIO(
... '''
... MY_INT:
... 1
... '''))
>>> params.get('MY_INT')
'1'
>>> params.get('MY_INT', ptype=int)
1
>>> params.get('MY_MISSING_INT', 2, ptype=int)
2
Be careful when dealing with booleans. If you want to be returned a boolean value, DO NOT set the ptype keyword to the builtin bool. This will not work as the Python bool function does not convert strings to booleans as you might expect. For example:
>>> bool('True')
True
>>> bool('False')
True
If you would like to get a boolean, use ptype='bool'
.
Note
Use ptype='bool'
not ptype=bool
.
If you use bool to convert a string the returned boolean will
be True
for any non-empty string. This is just how the
Python built-in bool
works:
>>> bool('0')
True
>>> bool('1')
True
>>> bool('')
False
>>> from six import StringIO
>>> params = ModelParameterDictionary(StringIO(
... '''
... MY_BOOL:
... false
... '''))
>>> params.get('MY_BOOL')
'false'
>>> params.get('MY_BOOL', ptype='bool')
False
params
()[source]¶List of all the parameters names in the parameter dictionary.
Returns: | list of str
|
---|
read_bool
(key)[source]¶Locate key in the input file and return it as a boolean.
Parameters: | key : str
default : bool
|
---|---|
Returns: | bool
|
Raises: | MissingKeyError
ParameterValueError
|
Examples
>>> from six import StringIO
>>> from landlab import ModelParameterDictionary
>>> params = ModelParameterDictionary(StringIO(
... '''
... MY_BOOL:
... true
... '''))
>>> params.read_bool('MY_BOOL')
True
read_bool_cmdline
(key)[source]¶Read a boolean from the command line.
Read a boolean from the command line and use it as a value for key in the dictonary.
Parameters: | key : str
|
---|---|
Returns: | bool
|
read_float
(key[, default])[source]¶Locate key in the input file and return it as a float.
Parameters: | key : str
default : float
|
---|---|
Returns: | float
|
Raises: | MissingKeyError
ParameterValueError
|
Examples
>>> from __future__ import print_function
>>> from six import StringIO
>>> from landlab import ModelParameterDictionary
>>> params = ModelParameterDictionary(StringIO(
... '''
... MY_FLOAT:
... 3.14
... '''))
>>> print('%.2f' % params.read_float('MY_FLOAT'))
3.14
read_float_cmdline
(key)[source]¶Read a float from the command line.
Read a float from the command line and use it as a value for key in the dictonary.
Parameters: | key : str
|
---|---|
Returns: | float
|
Raises: | ParameterValueError
|
read_from_file
(param_file)[source]¶Read parameters for a file.
Read and parse parameter dictionary information from a file or file-like object in param_file.
The format of the parameter file should be like:
# A comment line
SOME_KEY: this the key for some parameter
1.234
In other words, the rules are:
Parameters: | param_file : str or file_like
|
---|
read_int
(key[, default])[source]¶Locate key in the input file and return it as an integer.
Parameters: | key : str
default : int
|
---|---|
Returns: | int
|
Raises: | MissingKeyError
ParameterValueError
|
Examples
>>> from six import StringIO
>>> from landlab import ModelParameterDictionary
>>> params = ModelParameterDictionary(StringIO(
... '''
... MY_INT:
... 1
... '''))
>>> params.read_int('MY_INT')
1
read_int_cmdline
(key)[source]¶Read an integer from the command line.
Read an integer from the command line and use it as a value for key in the dictonary.
Parameters: | key : str
|
---|---|
Returns: | int
|
Raises: | ParameterValueError
|
read_string
(key)[source]¶Locate key in the input file and return it as a string.
Parameters: | key : str
default : str
|
---|---|
Returns: | str
|
Raises: | MissingKeyError
|
Examples
>>> from six import StringIO
>>> from landlab import ModelParameterDictionary
>>> params = ModelParameterDictionary(StringIO(
... '''
... MY_STRING:
... landlab
... '''))
>>> params.read_string('MY_STRING')
'landlab'
ParameterValueError
(key, val, expected_type)[source]¶Bases: landlab.core.model_parameter_dictionary.Error
Error to indicate a bad parameter values.
Raise this error if a parameter value given by key is not of the expected type.
load_file_contents
(file_like)[source]¶Load the contents of a file or file-like object.
Parameters: | file_like : file_like or str
|
---|---|
Returns: | str
|
load_params
(file_like)[source]¶Load parameters from a file.
Parameters: | file_like : file_like or str
|
---|---|
Returns: | dict
|
Examples
>>> from landlab.core import load_params
>>> contents = """
... start: 0.
... stop: 10.
... step: 2.
... """
>>> params = load_params(contents)
>>> isinstance(params, dict)
True
>>> params['start'], params['stop'], params['step']
(0.0, 10.0, 2.0)
>>> contents = """
... start: Start time
... 0.
... stop: Stop time
... 10.
... step: Step time
... 2.
... """
>>> params = load_params(contents)
>>> isinstance(params, dict)
True
>>> params['start'], params['stop'], params['step']
(0.0, 10.0, 2.0)
Some utilities for the landlab package.
radians_to_degrees (rads) |
Convert radians to compass-style degrees. |
extend_array (x[, fill]) |
Extend an array by one element. |
as_id_array (array) |
Convert an array to an array of ids. |
make_optional_arg_into_id_array (...) |
Transform an optional argument into an array of element ids. |
get_functions_from_module (mod[, pattern]) |
Get all the function in a module. |
add_functions_to_class (cls, funcs) |
Add functions as methods of a class. |
add_module_functions_to_class (cls, module[, ...]) |
Add functions from a module to a class as methods. |
strip_grid_from_method_docstring (funcs) |
Remove ‘grid’ from the parameters of a dict of functions’ docstrings. |
argsort_points_by_x_then_y (points) |
Sort points by coordinates, first x then y, returning sorted indices. |
sort_points_by_x_then_y (pts) |
Sort points by coordinates, first x then y. |
anticlockwise_argsort_points (pts[, midpt]) |
Argort points into anticlockwise order around a supplied center. |
get_categories_from_grid_methods (grid_type) |
Create a dict of category:[method_names] for a LL grid type. |
add_functions_to_class
(cls, funcs)[source]¶Add functions as methods of a class.
Parameters: | cls : class
funcs : dict
|
---|
add_module_functions_to_class
(cls, module, pattern=None)[source]¶Add functions from a module to a class as methods.
Parameters: | cls : class
module : module
pattern : str, optional
|
---|
anticlockwise_argsort_points
(pts, midpt=None)[source]¶Argort points into anticlockwise order around a supplied center.
Sorts CCW from east. Assumes a convex hull.
Parameters: | pts : Nx2 NumPy array of float (x,y) points to be sorted midpt : len-2 NumPy array of float (optional) (x, y) of point about which to sort. If not provided, mean of pts is used. |
---|---|
Returns: | pts : N NumPy array of int
|
Examples
>>> import numpy as np
>>> from landlab.core.utils import anticlockwise_argsort_points
>>> pts = np.zeros((4, 2))
>>> pts[:,0] = np.array([-3., -1., -1., -3.])
>>> pts[:,1] = np.array([-1., -3., -1., -3.])
>>> sortorder = anticlockwise_argsort_points(pts)
>>> np.all(sortorder == np.array([2, 0, 3, 1]))
True
anticlockwise_argsort_points_multiline
(pts_x, pts_y, out=None)[source]¶Argort multi lines of points into CCW order around the geometric center.
This version sorts columns of data in a 2d array. Sorts CCW from east around the geometric center of the points in the row. Assumes a convex hull.
Parameters: | pts_x : rows x n_elements array of float
pts_y : rows x n_elements array of float
out : rows x n_elements (optional)
|
---|---|
Returns: | sortorder : rows x n_elements NumPy array of int
|
Examples
>>> import numpy as np
>>> from landlab.core.utils import anticlockwise_argsort_points_multiline
>>> pts = np.array([[1, 3, 0, 2], [2, 0, 3, 1]])
>>> pts_x = np.array([[-3., -1., -1., -3.], [-3., -1., -1., -3.]])
>>> pts_y = np.array([[-1., -3., -1., -3.], [-3., -1., -3., -1.]])
>>> sortorder = anticlockwise_argsort_points_multiline(
... pts_x, pts_y, out=pts)
>>> np.all(sortorder == np.array([[2, 0, 3, 1], [1, 3, 0, 2]]))
True
>>> np.all(pts == np.array([[0, 1, 2, 3], [0, 1, 2, 3]]))
True
argsort_points_by_x_then_y
(points)[source]¶Sort points by coordinates, first x then y, returning sorted indices.
Parameters: | points : tuple of ndarray or ndarray of float, shape (*, 2)
|
---|---|
Returns: | ndarray of int, shape (n_points, )
|
Examples
>>> import numpy as np
>>> from landlab.core.utils import argsort_points_by_x_then_y
>>> points = np.zeros((10, 2))
>>> points[:, 0] = np.array([0., 0., 0., 1., 1., 1., 1., 2., 2., 2.])
>>> points[:, 1] = np.array([0., 1., 2., -0.5, 0.5, 1.5, 2.5, 0., 1., 2.])
>>> argsort_points_by_x_then_y(points)
array([3, 0, 7, 4, 1, 8, 5, 2, 9, 6])
>>> x = [0., 0., 0.,
... 1., 1., 1., 1.,
... 2., 2., 2.]
>>> y = [ 0. , 1. , 2. ,
... -0.5, 0.5, 1.5, 2.5,
... 0. , 1. , 2.]
>>> indices = argsort_points_by_x_then_y((x, y))
>>> indices
array([3, 0, 7, 4, 1, 8, 5, 2, 9, 6])
>>> argsort_points_by_x_then_y(np.array((x, y)))
array([3, 0, 7, 4, 1, 8, 5, 2, 9, 6])
as_id_array
(array)[source]¶Convert an array to an array of ids.
Parameters: | array : ndarray
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.core.utils import as_id_array
>>> x = np.arange(5)
>>> y = as_id_array(x)
>>> y
array([0, 1, 2, 3, 4])
>>> x = np.arange(5, dtype=np.int)
>>> y = as_id_array(x)
>>> y
array([0, 1, 2, 3, 4])
>>> x = np.arange(5, dtype=np.int32)
>>> y = as_id_array(x)
>>> y
array([0, 1, 2, 3, 4])
>>> y.dtype == np.int
True
>>> x = np.arange(5, dtype=np.int64)
>>> y = as_id_array(x)
>>> y
array([0, 1, 2, 3, 4])
>>> y.dtype == np.int
True
>>> x = np.arange(5, dtype=np.intp)
>>> y = as_id_array(x)
>>> y
array([0, 1, 2, 3, 4])
>>> y.dtype == np.int
True
extend_array
(x, fill=0)[source]¶Extend an array by one element.
The new array will appear as a view of the input array. However, its data now points to a newly-allocated buffer that’s one element longer and contains a copy of the contents of x. The last element of the buffer is filled with fill. To access the extended array, use the x attribute of the returned array.
Parameters: | x : ndarray
fill : number, optional
|
---|---|
Returns: | ndarray
|
Examples
>>> from landlab.core.utils import extend_array
>>> import numpy as np
>>> arr = extend_array(np.arange(4).reshape((2, 2)))
>>> arr
array([[0, 1],
[2, 3]])
>>> arr.ext
array([0, 1, 2, 3, 0])
If the array is already extended, don’t extend it more. However, possibly change its fill value.
>>> rtn = extend_array(arr, fill=999)
>>> rtn is arr
True
>>> rtn.ext
array([ 0, 1, 2, 3, 999])
get_categories_from_grid_methods
(grid_type)[source]¶Create a dict of category:[method_names] for a LL grid type.
Looks in the final line of the docstrings of class methods and properties for a catgory declaration, “LLCATS: ”. It then creates and returns a dict with keys found as categories and values that are lists of the names of methods that have that category.
DEPR : deprecated GINF : information about the grid as a whole NINF : information about nodes LINF : information about links PINF : information about patches CINF : information about cells FINF : information about faces CNINF : information about corners FIELDIO : methods to access and change fields FIELDADD : methods to create new fields/delete old fields FIELDINF : information about fields (keys, names, etc) GRAD : methods for gradients, fluxes, divergences and slopes MAP : methods to map from one element type to another BC : methods to interact with BCs SURF : methods for surface analysis (slope, aspect, hillshade) SUBSET : methods to indentify part of the grid based on conditions CONN : method describing the connectivity of one element to another
(i.e., ‘links_at_node’)
OTHER : anything else
Parameters: | grid_type : {‘ModelGrid’, ‘RasterModelGrid’, ‘HexModelGrid’,
|
---|---|
Returns: | cat_dict : dict
grid_dict : dict
FAILS : dict of dicts
|
get_functions_from_module
(mod, pattern=None)[source]¶Get all the function in a module.
Parameters: | mod : module
pattern : str, optional
|
---|---|
Returns: | dict
|
make_optional_arg_into_id_array
(number_of_elements, *args)[source]¶Transform an optional argument into an array of element ids.
Many landlab functions an optional argument of element ids that tells the function to operate only on the elements provided. However, if the argument is absent, all of the elements are to be operated on. This is a convenience function that converts such an arguments list into an array of elements ids.
Parameters: | number_of_elements : int
array : array_like
|
---|---|
Returns: | ndarray
|
Examples
>>> import numpy as np
>>> from landlab.core.utils import make_optional_arg_into_id_array
>>> make_optional_arg_into_id_array(4)
array([0, 1, 2, 3])
>>> make_optional_arg_into_id_array(4, [0, 0, 0, 0])
array([0, 0, 0, 0])
>>> make_optional_arg_into_id_array(4, (1, 1, 1, 1))
array([1, 1, 1, 1])
>>> make_optional_arg_into_id_array(4, np.ones(4))
array([1, 1, 1, 1])
>>> make_optional_arg_into_id_array(4, 0)
array([0])
>>> make_optional_arg_into_id_array(4, np.array([[1, 2], [3, 4]]))
array([1, 2, 3, 4])
radians_to_degrees
(rads)[source]¶Convert radians to compass-style degrees.
Convert angles (measured counter-clockwise from the positive x-axis) in radians to angles in degrees measured clockwise starting from north.
Parameters: | rads : float or ndarray
|
---|---|
Returns: | degrees : float or ndarray
|
Examples
>>> import numpy as np
>>> from landlab.core.utils import radians_to_degrees
>>> radians_to_degrees(0.)
90.0
>>> radians_to_degrees(np.pi / 2.)
0.0
>>> radians_to_degrees(- 3 * np.pi / 2.)
0.0
>>> radians_to_degrees(np.array([- np.pi, np.pi]))
array([ 270., 270.])
sort_points_by_x_then_y
(pts)[source]¶Sort points by coordinates, first x then y.
Parameters: | pts : Nx2 NumPy array of float
|
---|---|
Returns: | pts : Nx2 NumPy array of float
|
Examples
>>> import numpy as np
>>> from landlab.core.utils import sort_points_by_x_then_y
>>> pts = np.zeros((10, 2))
>>> pts[:,0] = np.array([0., 0., 0., 1., 1., 1., 1., 2., 2., 2.])
>>> pts[:,1] = np.array([0., 1., 2., -0.5, 0.5, 1.5, 2.5, 0., 1., 2.])
>>> pts = sort_points_by_x_then_y(pts)
>>> pts
array([[ 1. , -0.5],
[ 0. , 0. ],
[ 2. , 0. ],
[ 1. , 0.5],
[ 0. , 1. ],
[ 2. , 1. ],
[ 1. , 1.5],
[ 0. , 2. ],
[ 2. , 2. ],
[ 1. , 2.5]])
strip_grid_from_method_docstring
(funcs)[source]¶Remove ‘grid’ from the parameters of a dict of functions’ docstrings.
Note that the docstring must be close to numpydoc standards for this to work.
Parameters: | funcs : dict
|
---|
Examples
>>> from landlab.grid.mappers import dummy_func_to_demonstrate_docstring_modification as dummy_func
>>> funcs = {'dummy_func_to_demonstrate_docstring_modification':
... dummy_func}
>>> help(dummy_func)
Help on function dummy_func_to_demonstrate_docstring_modification in module landlab.grid.mappers:
dummy_func_to_demonstrate_docstring_modification(grid, some_arg)
A dummy function to demonstrate automated docstring changes.
Construction::
dummy_func_to_demonstrate_docstring_modification(grid, some_arg)
Parameters
----------
grid : ModelGrid
A Landlab modelgrid.
some_arg : whatever
A dummy argument.
Examples
--------
...
>>> strip_grid_from_method_docstring(funcs)
>>> help(dummy_func)
Help on function dummy_func_to_demonstrate_docstring_modification in module landlab.grid.mappers:
dummy_func_to_demonstrate_docstring_modification(grid, some_arg)
A dummy function to demonstrate automated docstring changes.
Construction::
grid.dummy_func_to_demonstrate_docstring_modification(some_arg)
Parameters
----------
some_arg : whatever
A dummy argument.
Examples
--------
...
load_params
(file_like)[source]¶Load parameters from a file.
Parameters: | file_like : file_like or str
|
---|---|
Returns: | dict
|
Examples
>>> from landlab.core import load_params
>>> contents = """
... start: 0.
... stop: 10.
... step: 2.
... """
>>> params = load_params(contents)
>>> isinstance(params, dict)
True
>>> params['start'], params['stop'], params['step']
(0.0, 10.0, 2.0)
>>> contents = """
... start: Start time
... 0.
... stop: Stop time
... 10.
... step: Step time
... 2.
... """
>>> params = load_params(contents)
>>> isinstance(params, dict)
True
>>> params['start'], params['stop'], params['step']
(0.0, 10.0, 2.0)