#! /usr/bin/env python
"""Map values from one grid element to another.
Grid mapping functions
+++++++++++++++++++++++
.. autosummary::
:toctree: generated/
~landlab.grid.mappers.map_link_head_node_to_link
~landlab.grid.mappers.map_link_tail_node_to_link
~landlab.grid.mappers.map_min_of_link_nodes_to_link
~landlab.grid.mappers.map_max_of_link_nodes_to_link
~landlab.grid.mappers.map_mean_of_link_nodes_to_link
~landlab.grid.mappers.map_value_at_min_node_to_link
~landlab.grid.mappers.map_value_at_max_node_to_link
~landlab.grid.mappers.map_node_to_cell
~landlab.grid.mappers.map_min_of_node_links_to_node
~landlab.grid.mappers.map_max_of_node_links_to_node
~landlab.grid.mappers.map_upwind_node_link_max_to_node
~landlab.grid.mappers.map_downwind_node_link_max_to_node
~landlab.grid.mappers.map_upwind_node_link_mean_to_node
~landlab.grid.mappers.map_downwind_node_link_mean_to_node
~landlab.grid.mappers.map_value_at_upwind_node_link_max_to_node
~landlab.grid.mappers.map_value_at_downwind_node_link_max_to_node
~landlab.grid.mappers.dummy_func_to_demonstrate_docstring_modification
Each link has a *tail* and *head* node. The *tail* nodes are located at the
start of a link, while the head nodes are located at end of a link.
Below, the numbering scheme for links in `RasterModelGrid` is illustrated
with an example of a four-row by five column grid (4x5). In this example,
each * (or X) is a node, the lines represent links, and the ^ and > symbols
indicate the direction and *head* of each link. Link heads in the
`RasterModelGrid` always point in the cardinal directions North (N) or East
(E).::
*--27-->*--28-->*--29-->*--30-->*
^ ^ ^ ^ ^
22 23 24 25 26
| | | | |
*--18-->*--19-->*--20-->*--21-->*
^ ^ ^ ^ ^
13 14 15 16 17
| | | | |
*---9-->*--10-->X--11-->*--12-->*
^ ^ ^ ^ ^
4 5 6 7 8
| | | | |
*--0--->*---1-->*--2--->*---3-->*
For example, node 'X' has four link-neighbors. From south and going clockwise,
these neighbors are [6, 10, 15, 11]. Both link 6 and link 10 have node 'X' as
their 'head' node, while links 15 and 11 have node 'X' as their tail node.
"""
from __future__ import division
import numpy as np
from landlab.grid.base import BAD_INDEX_VALUE, CLOSED_BOUNDARY, INACTIVE_LINK
def map_link_head_node_to_link(grid, var_name, out=None):
"""Map values from a link head nodes to links.
Iterate over a grid and identify the node at the *head*. For each link,
the value of *var_name* at the *head* node is mapped to the corresponding
link.
In a RasterModelGrid, each one node has two adjacent "link heads". This
means each node value is mapped to two corresponding links.
Construction::
map_link_head_node_to_link(grid, var_name, out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
var_name : array or field name
Values defined at nodes.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at links.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_link_head_node_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['z'] = np.array([ 0, 1, 2, 3,
... 4, 5, 6, 7,
... 8, 9, 10, 11])
>>> map_link_head_node_to_link(rmg, 'z')
array([ 1., 2., 3., 4., 5., 6., 7., 5., 6., 7., 8.,
9., 10., 11., 9., 10., 11.])
>>> values_at_links = rmg.empty(at='link')
>>> rtn = map_link_head_node_to_link(rmg, 'z', out=values_at_links)
>>> values_at_links
array([ 1., 2., 3., 4., 5., 6., 7., 5., 6., 7., 8.,
9., 10., 11., 9., 10., 11.])
>>> rtn is values_at_links
True
LLCATS: NINF LINF MAP
"""
if type(var_name) is str:
var_name = grid.at_node[var_name]
if out is None:
out = grid.empty(at='link')
out[:] = var_name[grid.node_at_link_head]
return out
def map_link_tail_node_to_link(grid, var_name, out=None):
"""Map values from a link tail nodes to links.
map_link_tail_node_to_link iterates across the grid and
identifies the node at the "tail", or the "from" node for each link. For
each link, the value of 'var_name' at the "from" node is mapped to the
corresponding link.
In a RasterModelGrid, each one node has two adjacent "link tails". This
means each node value is mapped to two corresponding links.
Construction::
map_link_tail_node_to_link(grid, var_name, out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
var_name : array or field name
Values defined at nodes.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at links.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_link_tail_node_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['z'] = np.array([ 0, 1, 2, 3,
... 4, 5, 6, 7,
... 8, 9, 10, 11])
>>> map_link_tail_node_to_link(rmg, 'z')
array([ 0., 1., 2., 0., 1., 2., 3., 4., 5., 6., 4.,
5., 6., 7., 8., 9., 10.])
>>> values_at_links = rmg.empty(at='link')
>>> rtn = map_link_tail_node_to_link(rmg, 'z', out=values_at_links)
>>> values_at_links
array([ 0., 1., 2., 0., 1., 2., 3., 4., 5., 6., 4.,
5., 6., 7., 8., 9., 10.])
>>> rtn is values_at_links
True
LLCATS: NINF LINF MAP
"""
if out is None:
out = grid.empty(at='link')
if type(var_name) is str:
var_name = grid.at_node[var_name]
out[:] = var_name[grid.node_at_link_tail]
return out
def map_min_of_link_nodes_to_link(grid, var_name, out=None):
"""Map the minimum of a link's nodes to the link.
map_min_of_link_nodes_to_link iterates across the grid and
identifies the node values at both the "head" and "tail" of a given link.
This function evaluates the value of 'var_name' at both the "to" and
"from" node. The minimum value of the two node values is then mapped to
the link.
Construction::
map_min_of_link_nodes_to_link(grid, var_name, out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
var_name : array or field name
Values defined at nodes.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at links.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_min_of_link_nodes_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('node', 'z',
... [[ 0, 1, 2, 3],
... [ 7, 6, 5, 4],
... [ 8, 9, 10, 11]])
>>> map_min_of_link_nodes_to_link(rmg, 'z')
array([ 0., 1., 2., 0., 1., 2., 3., 6., 5., 4., 7.,
6., 5., 4., 8., 9., 10.])
>>> values_at_links = rmg.empty(at='link')
>>> rtn = map_min_of_link_nodes_to_link(rmg, 'z', out=values_at_links)
>>> values_at_links
array([ 0., 1., 2., 0., 1., 2., 3., 6., 5., 4., 7.,
6., 5., 4., 8., 9., 10.])
>>> rtn is values_at_links
True
LLCATS: NINF LINF MAP
"""
if out is None:
out = grid.empty(at='link')
if type(var_name) is str:
var_name = grid.at_node[var_name]
np.minimum(var_name[grid.node_at_link_head],
var_name[grid.node_at_link_tail], out=out)
return out
def map_max_of_link_nodes_to_link(grid, var_name, out=None):
"""Map the maximum of a link's nodes to the link.
map_max_of_link_nodes_to_link iterates across the grid and
identifies the node values at both the "head" and "tail" of a given link.
This function evaluates the value of 'var_name' at both the "to" and
"from" node. The maximum value of the two node values is then mapped to
the link.
Construction::
map_max_of_link_nodes_to_link(grid, var_name, out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
var_name : array or field name
Values defined at nodes.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at links.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_max_of_link_nodes_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('node', 'z',
... [[0, 1, 2, 3],
... [7, 6, 5, 4],
... [8, 9, 10, 11]])
>>> map_max_of_link_nodes_to_link(rmg, 'z')
array([ 1., 2., 3., 7., 6., 5., 4., 7., 6., 5., 8.,
9., 10., 11., 9., 10., 11.])
>>> values_at_links = rmg.empty(at='link')
>>> rtn = map_max_of_link_nodes_to_link(rmg, 'z', out=values_at_links)
>>> values_at_links
array([ 1., 2., 3., 7., 6., 5., 4., 7., 6., 5., 8.,
9., 10., 11., 9., 10., 11.])
>>> rtn is values_at_links
True
LLCATS: NINF LINF MAP
"""
if out is None:
out = grid.empty(at='link')
if type(var_name) is str:
var_name = grid.at_node[var_name]
np.maximum(var_name[grid.node_at_link_head],
var_name[grid.node_at_link_tail], out=out)
return out
def map_mean_of_link_nodes_to_link(grid, var_name, out=None):
"""Map the mean of a link's nodes to the link.
map_mean_of_link_nodes_to_link iterates across the grid and
identifies the node values at both the "head" and "tail" of a given link.
This function takes the sum of the two values of 'var_name' at both the
"to" and "from" node. The average value of the two node values of
'var_name' is then mapped to the link.
Construction::
map_mean_of_link_nodes_to_link(grid, var_name, out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
var_name : array or field name
Values defined at nodes.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at links.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_mean_of_link_nodes_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['z'] = np.array([ 0, 1, 2, 3,
... 4, 5, 6, 7,
... 8, 9, 10, 11])
>>> map_mean_of_link_nodes_to_link(rmg, 'z')
array([ 0.5, 1.5, 2.5, 2. , 3. , 4. , 5. , 4.5, 5.5,
6.5, 6. , 7. , 8. , 9. , 8.5, 9.5, 10.5])
>>> values_at_links = rmg.empty(at='link')
>>> rtn = map_mean_of_link_nodes_to_link(rmg, 'z', out=values_at_links)
>>> values_at_links
array([ 0.5, 1.5, 2.5, 2. , 3. , 4. , 5. , 4.5, 5.5,
6.5, 6. , 7. , 8. , 9. , 8.5, 9.5, 10.5])
>>> rtn is values_at_links
True
LLCATS: NINF LINF MAP
"""
if out is None:
out = grid.empty(at='link')
if type(var_name) is str:
var_name = grid.at_node[var_name]
out[:] = 0.5 * (var_name[grid.node_at_link_head] +
var_name[grid.node_at_link_tail])
return out
def map_value_at_min_node_to_link(grid, control_name, value_name, out=None):
"""
Map the the value found in one node array to a link, based on the
minimum value found in a second node field or array.
map_value_at_min_node_to_link iterates across the grid and
identifies the node values at both the "head" and "tail" of a given link.
This function evaluates the value of 'control_name' at both the "to" and
"from" node. The value of 'value_name' at the node with the minimum value
of the two values of 'control_name' is then mapped to the link.
Construction::
map_value_at_min_node_to_link(grid, control_name, value_name,
out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
control_name : array or field name
Name of field defined at nodes or a node array that dictates which end
of the link to draw values from.
value_name : array or field name
Name of field defined at nodes or node array from which values are
drawn, based on control_name.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at links.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_value_at_min_node_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('node', 'z',
... [[0, 1, 2, 3],
... [7, 6, 5, 4],
... [8, 9, 10, 11]])
>>> _ = rmg.add_field('node', 'vals_to_map',
... [[0, 10, 20, 30],
... [70, 60, 50, 40],
... [80, 90, 100, 110]])
>>> map_value_at_min_node_to_link(rmg, 'z', 'vals_to_map')
array([ 0., 10., 20., 0., 10., 20., 30., 60., 50.,
40., 70., 60., 50., 40., 80., 90., 100.])
LLCATS: NINF LINF MAP
"""
if out is None:
out = grid.empty(at='link')
if type(control_name) is str:
control_name = grid.at_node[control_name]
if type(value_name) is str:
value_name = grid.at_node[value_name]
head_control = control_name[grid.node_at_link_head]
tail_control = control_name[grid.node_at_link_tail]
head_vals = value_name[grid.node_at_link_head]
tail_vals = value_name[grid.node_at_link_tail]
out[:] = np.where(tail_control < head_control, tail_vals, head_vals)
return out
def map_value_at_max_node_to_link(grid, control_name, value_name, out=None):
"""
Map the the value found in one node array to a link, based on the
maximum value found in a second node field or array.
map_value_at_max_node_to_link iterates across the grid and
identifies the node values at both the "head" and "tail" of a given link.
This function evaluates the value of 'control_name' at both the "to" and
"from" node. The value of 'value_name' at the node with the maximum value
of the two values of 'control_name' is then mapped to the link.
Construction::
map_value_at_max_node_to_link(grid, control_name, value_name,
out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
control_name : array or field name
Name of field defined at nodes or a node array that dictates which end
of the link to draw values from.
value_name : array or field name
Name of field defined at nodes or node array from which values are
drawn, based on control_name.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at links.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_value_at_max_node_to_link
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('node', 'z',
... [[0, 1, 2, 3],
... [7, 6, 5, 4],
... [8, 9, 10, 11]])
>>> _ = rmg.add_field('node', 'vals_to_map',
... [[0, 10, 20, 30],
... [70, 60, 50, 40],
... [80, 90, 100, 110]])
>>> map_value_at_max_node_to_link(rmg, 'z', 'vals_to_map')
array([ 10., 20., 30., 70., 60., 50., 40., 70., 60.,
50., 80., 90., 100., 110., 90., 100., 110.])
LLCATS: NINF LINF MAP
"""
if out is None:
out = grid.empty(at='link')
if type(control_name) is str:
control_name = grid.at_node[control_name]
if type(value_name) is str:
value_name = grid.at_node[value_name]
head_control = control_name[grid.node_at_link_head]
tail_control = control_name[grid.node_at_link_tail]
head_vals = value_name[grid.node_at_link_head]
tail_vals = value_name[grid.node_at_link_tail]
out[:] = np.where(tail_control > head_control, tail_vals, head_vals)
return out
def map_node_to_cell(grid, var_name, out=None):
"""Map values for nodes to cells.
map_node_to_cell iterates across the grid and
identifies the all node values of 'var_name'.
This function takes node values of 'var_name' and mapes that value to the
corresponding cell area for each node.
Construction::
map_node_to_cell(grid, var_name, out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
var_name : array or field name
Values defined at nodes.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at cells.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_node_to_cell
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> _ = rmg.add_field('node', 'z', np.arange(12.))
>>> map_node_to_cell(rmg, 'z')
array([ 5., 6.])
>>> values_at_cells = rmg.empty(at='cell')
>>> rtn = map_node_to_cell(rmg, 'z', out=values_at_cells)
>>> values_at_cells
array([ 5., 6.])
>>> rtn is values_at_cells
True
LLCATS: CINF NINF MAP
"""
if out is None:
out = grid.empty(at='cell')
if type(var_name) is str:
var_name = grid.at_node[var_name]
out[:] = var_name[grid.node_at_cell]
return out
def map_min_of_node_links_to_node(grid, var_name, out=None):
"""Map the minimum value of a nodes' links to the node.
map_min_of_node_links_to_node iterates across the grid and
identifies the link values at each link connected to a node.
This function finds the minimum value of 'var_name' of each set
of links, and then maps this value to the node. Note no attempt is made
to honor the directionality of the links.
Construction::
map_min_of_node_links_to_node(grid, var_name, out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at nodes.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_min_of_node_links_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.arange(rmg.number_of_links)
>>> map_min_of_node_links_to_node(rmg, 'grad')
array([ 0., 0., 1., 2.,
3., 4., 5., 6.,
10., 11., 12., 13.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_min_of_node_links_to_node(rmg, 'grad', out=values_at_nodes)
>>> values_at_nodes
array([ 0., 0., 1., 2.,
3., 4., 5., 6.,
10., 11., 12., 13.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
"""
if out is None:
out = grid.empty(at='node')
values_at_linksX = np.empty(grid.number_of_links+1, dtype=float)
values_at_linksX[-1] = np.finfo(dtype=float).max
if type(var_name) is str:
values_at_linksX[:-1] = grid.at_link[var_name]
else:
values_at_linksX[:-1] = var_name
np.amin(values_at_linksX[grid.links_at_node], axis=1, out=out)
return out
def map_max_of_node_links_to_node(grid, var_name, out=None):
"""Map the maximum value of a nodes' links to the node.
map_max_of_node_links_to_node iterates across the grid and
identifies the link values at each link connected to a node.
This function finds the maximum value of 'var_name' of each set
of links, and then maps this value to the node. Note no attempt is made
to honor the directionality of the links.
Construction::
map_max_of_node_links_to_node(grid, var_name, out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at nodes.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_max_of_node_links_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.arange(rmg.number_of_links)
>>> map_max_of_node_links_to_node(rmg, 'grad')
array([ 3., 4., 5., 6.,
10., 11., 12., 13.,
14., 15., 16., 16.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_max_of_node_links_to_node(rmg, 'grad', out=values_at_nodes)
>>> values_at_nodes
array([ 3., 4., 5., 6.,
10., 11., 12., 13.,
14., 15., 16., 16.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
"""
if out is None:
out = grid.empty(at='node')
values_at_linksX = np.empty(grid.number_of_links+1, dtype=float)
values_at_linksX[-1] = np.finfo(dtype=float).min
if type(var_name) is str:
values_at_linksX[:-1] = grid.at_link[var_name]
else:
values_at_linksX[:-1] = var_name
np.amax(values_at_linksX[grid.links_at_node], axis=1, out=out)
return out
def map_upwind_node_link_max_to_node(grid, var_name, out=None):
"""
Map the largest magnitude of the links bringing flux into the node to the
node.
map_upwind_node_link_max_to_node iterates across the grid and identifies
the link values at each link connected to a node. It then uses the
link_dirs_at_node data structure to identify links bringing flux into the
node, then maps the maximum magnitude of 'var_name' found on these links
onto the node. If no upwind link is found, the value will be recorded as
zero.
Construction::
map_upwind_node_link_max_to_node(grid, var_name, out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at nodes.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_upwind_node_link_max_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.])
>>> map_upwind_node_link_max_to_node(rmg, 'grad')
array([ 0., 1., 2., 1.,
0., 1., 2., 1.,
0., 1., 2., 1.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_upwind_node_link_max_to_node(rmg, 'grad',
... out=values_at_nodes)
>>> values_at_nodes
array([ 0., 1., 2., 1.,
0., 1., 2., 1.,
0., 1., 2., 1.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
"""
if out is None:
out = grid.empty(at='node')
if type(var_name) is str:
var_name = grid.at_link[var_name]
values_at_links = var_name[grid.links_at_node] * grid.link_dirs_at_node
# this procedure makes incoming links NEGATIVE
np.amax(-values_at_links, axis=1, out=out)
return out
def map_downwind_node_link_max_to_node(grid, var_name, out=None):
"""
Map the largest magnitude of the links carrying flux from the node to the
node.
map_downwind_node_link_max_to_node iterates across the grid and identifies
the link values at each link connected to a node. It then uses the
link_dirs_at_node data structure to identify links carrying flux out of the
node, then maps the maximum magnitude of 'var_name' found on these links
onto the node. If no downwind link is found, the value will be recorded as
zero.
Construction::
map_downwind_node_link_max_to_node(grid, var_name, out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at nodes.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_downwind_node_link_max_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.])
>>> map_downwind_node_link_max_to_node(rmg, 'grad')
array([ 1., 2., 1., 0.,
1., 2., 1., 0.,
1., 2., 1., 0.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_downwind_node_link_max_to_node(rmg, 'grad',
... out=values_at_nodes)
>>> values_at_nodes
array([ 1., 2., 1., 0.,
1., 2., 1., 0.,
1., 2., 1., 0.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
"""
if out is None:
out = grid.empty(at='node')
if type(var_name) is str:
var_name = grid.at_link[var_name]
values_at_links = var_name[grid.links_at_node] * grid.link_dirs_at_node
# this procedure makes incoming links NEGATIVE
steepest_links_at_node = np.amax(values_at_links, axis=1)
np.fabs(steepest_links_at_node, out=out)
return out
def map_upwind_node_link_mean_to_node(grid, var_name, out=None):
"""
Map the mean magnitude of the links bringing flux into the node to the
node.
map_upwind_node_link_mean_to_node iterates across the grid and identifies
the link values at each link connected to a node. It then uses the
link_dirs_at_node data structure to identify links bringing flux into the
node, then maps the mean magnitude of 'var_name' found on these links
onto the node. Links with zero values are not included in the means,
and zeros are returned if no upwind links are found.
Construction::
map_upwind_node_link_mean_to_node(grid, var_name, out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at nodes.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_upwind_node_link_mean_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... -2., -3., -4., -5.,
... -1., -2., -1.,
... -1., -2., -3., -4.,
... -1., -2., -1.])
>>> map_upwind_node_link_mean_to_node(rmg, 'grad')
array([ 0. , 1. , 2. , 1. ,
2. , 2. , 3. , 3. ,
1. , 1.5, 2.5, 2.5])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_upwind_node_link_mean_to_node(rmg, 'grad',
... out=values_at_nodes)
>>> values_at_nodes
array([ 0. , 1. , 2. , 1. ,
2. , 2. , 3. , 3. ,
1. , 1.5, 2.5, 2.5])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
"""
if out is None:
out = grid.empty(at='node')
if type(var_name) is str:
var_name = grid.at_link[var_name]
values_at_links = var_name[grid.links_at_node] * grid.link_dirs_at_node
# this procedure makes incoming links NEGATIVE
vals_in_positive = -values_at_links
vals_above_zero = vals_in_positive > 0.
total_vals = np.sum(vals_in_positive*vals_above_zero, axis=1)
link_count = np.sum(vals_above_zero, axis=1)
np.divide(total_vals, link_count, out=out)
out[np.isnan(out)] = 0.
return out
def map_downwind_node_link_mean_to_node(grid, var_name, out=None):
"""
Map the mean magnitude of the links carrying flux out of the node to the
node.
map_downwind_node_link_mean_to_node iterates across the grid and identifies
the link values at each link connected to a node. It then uses the
link_dirs_at_node data structure to identify links carrying flux out of the
node, then maps the mean magnitude of 'var_name' found on these links
onto the node. Links with zero values are not included in the means,
and zeros are returned if no upwind links are found.
Construction::
map_downwind_node_link_mean_to_node(grid, var_name, out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
var_name : array or field name
Values defined at links.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at nodes.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_downwind_node_link_mean_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... -2., -3., -4., -5.,
... -1., -2., -1.,
... -1., -2., -3., -4.,
... -1., -2., -1.])
>>> map_downwind_node_link_mean_to_node(rmg, 'grad')
array([ 1.5, 2.5, 2.5, 5. ,
1. , 2. , 2. , 4. ,
1. , 2. , 1. , 0. ])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_downwind_node_link_mean_to_node(rmg, 'grad',
... out=values_at_nodes)
>>> values_at_nodes
array([ 1.5, 2.5, 2.5, 5. ,
1. , 2. , 2. , 4. ,
1. , 2. , 1. , 0. ])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
"""
if out is None:
out = grid.empty(at='node')
if type(var_name) is str:
var_name = grid.at_link[var_name]
values_at_links = var_name[grid.links_at_node] * grid.link_dirs_at_node
# this procedure makes incoming links NEGATIVE
vals_in_positive = values_at_links
vals_above_zero = vals_in_positive > 0.
total_vals = np.sum(vals_in_positive*vals_above_zero, axis=1)
link_count = np.sum(vals_above_zero, axis=1)
np.divide(total_vals, link_count, out=out)
out[np.isnan(out)] = 0.
return out
def map_value_at_upwind_node_link_max_to_node(grid, control_name,
value_name, out=None):
"""
Map the the value found in one link array to a node, based on the
largest magnitude value of links bringing fluxes into the node,
found in a second node array or field.
map_upwind_node_link_max_to_node iterates across the grid and identifies
the link control_values at each link connected to a node. It then uses the
link_dirs_at_node data structure to identify links bringing flux into the
node, then identifies the link with the maximum magnitude. The value of the
second field 'value_name' at these links is then mapped onto the node.
If no upwind link is found, the value will be recorded as zero.
Construction::
map_value_at_upwind_node_link_max_to_node(grid, control_name,
value_name, out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
control_name : array or field name
Values defined at nodes that dictate which end of the link to
draw values from.
value_name : array or field name
Values defined at nodes from which values are drawn, based on
control_name.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at nodes.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_value_at_upwind_node_link_max_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.])
>>> rmg.at_link['vals'] = np.arange(rmg.number_of_links, dtype=float)
>>> map_value_at_upwind_node_link_max_to_node(rmg, 'grad', 'vals')
array([ 0., 0., 1., 2.,
0., 7., 8., 9.,
0., 14., 15., 16.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_value_at_upwind_node_link_max_to_node(rmg, 'grad', 'vals',
... out=values_at_nodes)
>>> values_at_nodes
array([ 0., 0., 1., 2.,
0., 7., 8., 9.,
0., 14., 15., 16.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
"""
if out is None:
out = grid.empty(at='node')
if type(control_name) is str:
control_name = grid.at_link[control_name]
if type(value_name) is str:
value_name = grid.at_link[value_name]
values_at_nodes = control_name[grid.links_at_node] * grid.link_dirs_at_node
# this procedure makes incoming links NEGATIVE
which_link = np.argmax(-values_at_nodes, axis=1)
invalid_links = values_at_nodes >= 0.
link_vals_without_invalids = value_name[grid.links_at_node]
link_vals_without_invalids[invalid_links] = 0.
out[:] = link_vals_without_invalids[np.arange(grid.number_of_nodes),
which_link]
return out
def map_value_at_downwind_node_link_max_to_node(grid, control_name,
value_name, out=None):
"""
Map the the value found in one link array to a node, based on the
largest magnitude value of links carrying fluxes out of the node,
found in a second node array or field.
map_downwind_node_link_max_to_node iterates across the grid and identifies
the link control_values at each link connected to a node. It then uses the
link_dirs_at_node data structure to identify links carrying flux out of the
node, then identifies the link with the maximum magnitude. The value of the
second field 'value_name' at these links is then mapped onto the node.
If no downwind link is found, the value will be recorded as zero.
Construction::
map_value_at_downwind_node_link_max_to_node(grid, control_name,
value_name, out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
control_name : array or field name
Values defined at nodes that dictate which end of the link to
draw values from.
value_name : array or field name
Values defined at nodes from which values are drawn, based on
control_name.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at nodes.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_value_at_downwind_node_link_max_to_node
>>> from landlab import RasterModelGrid
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_link['grad'] = np.array([-1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.,
... 0., 0., 0., 0.,
... -1., -2., -1.])
>>> rmg.at_link['vals'] = np.arange(rmg.number_of_links, dtype=float)
>>> map_value_at_downwind_node_link_max_to_node(rmg, 'grad', 'vals')
array([ 0., 1., 2., 0.,
7., 8., 9., 0.,
14., 15., 16., 0.])
>>> values_at_nodes = rmg.add_empty('node', 'z')
>>> rtn = map_value_at_downwind_node_link_max_to_node(rmg, 'grad', 'vals',
... out=values_at_nodes)
>>> values_at_nodes
array([ 0., 1., 2., 0.,
7., 8., 9., 0.,
14., 15., 16., 0.])
>>> rtn is values_at_nodes
True
LLCATS: NINF LINF MAP
"""
if out is None:
out = grid.empty(at='node')
if type(control_name) is str:
control_name = grid.at_link[control_name]
if type(value_name) is str:
value_name = grid.at_link[value_name]
values_at_nodes = control_name[grid.links_at_node] * grid.link_dirs_at_node
# this procedure makes incoming links NEGATIVE
which_link = np.argmax(values_at_nodes, axis=1)
invalid_links = values_at_nodes <= 0.
link_vals_without_invalids = value_name[grid.links_at_node]
link_vals_without_invalids[invalid_links] = 0.
out[:] = link_vals_without_invalids[np.arange(grid.number_of_nodes),
which_link]
return out
def map_mean_of_patch_nodes_to_patch(grid, var_name, ignore_closed_nodes=True,
out=None):
"""
Map the mean value of nodes around a patch to the patch.
Construction::
map_mean_of_patch_nodes_to_patch(grid, var_name,
ignore_closed_nodes=True, out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
var_name : array or field name
Values defined at nodes.
ignore_closed_nodes : bool
If True, do not incorporate closed nodes into calc. If all nodes are
masked at a patch, record zero if out is None or leave the existing
value if out.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at patches.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_mean_of_patch_nodes_to_patch
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 5., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> map_mean_of_patch_nodes_to_patch(rmg, 'vals')
array([ 4.5, 3.5, 2.5,
3.5, 2.5, 1.5])
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 5., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> rmg.status_at_node[rmg.node_x > 1.5] = CLOSED_BOUNDARY
>>> ans = np.zeros(6, dtype=float)
>>> _ = map_mean_of_patch_nodes_to_patch(rmg, 'vals', out=ans)
>>> ans # doctest: +NORMALIZE_WHITESPACE
array([ 4.5, 4. , 0. ,
3.5, 3. , 0. ])
LLCATS: PINF NINF MAP
"""
if out is None:
out = np.zeros(grid.number_of_patches, dtype=float)
if type(var_name) is str:
var_name = grid.at_node[var_name]
values_at_nodes = var_name[grid.nodes_at_patch]
if ignore_closed_nodes:
values_at_nodes = np.ma.masked_where(grid.status_at_node[
grid.nodes_at_patch] == CLOSED_BOUNDARY,
values_at_nodes, copy=False)
meanvals = np.mean(values_at_nodes, axis=1)
if type(meanvals.mask) is not np.bool_:
gooddata = np.logical_not(meanvals.mask)
out[gooddata] = meanvals.data[gooddata]
else:
if not meanvals.mask:
out[:] = meanvals.data
else:
np.mean(values_at_nodes, axis=1, out=out)
return out
def map_max_of_patch_nodes_to_patch(grid, var_name, ignore_closed_nodes=True,
out=None):
"""
Map the maximum value of nodes around a patch to the patch.
Construction::
map_max_of_patch_nodes_to_patch(grid, var_name,
ignore_closed_nodes=True, out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
var_name : array or field name
Values defined at nodes.
ignore_closed_nodes : bool
If True, do not incorporate closed nodes into calc. If all nodes are
masked at a patch, record zero if out is None or leave the existing
value if out.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at patches.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_max_of_patch_nodes_to_patch
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 3., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> map_max_of_patch_nodes_to_patch(rmg, 'vals')
array([ 5., 4., 3.,
4., 4., 3.])
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 3., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> rmg.status_at_node[rmg.node_x > 1.5] = CLOSED_BOUNDARY
>>> ans = np.zeros(6, dtype=float)
>>> _ = map_max_of_patch_nodes_to_patch(rmg, 'vals', out=ans)
>>> ans # doctest: +NORMALIZE_WHITESPACE
array([ 5., 4., 0.,
4., 4., 0.])
LLCATS: PINF NINF MAP
"""
if out is None:
out = np.zeros(grid.number_of_patches, dtype=float)
if type(var_name) is str:
var_name = grid.at_node[var_name]
values_at_nodes = var_name[grid.nodes_at_patch]
if ignore_closed_nodes:
values_at_nodes = np.ma.masked_where(grid.status_at_node[
grid.nodes_at_patch] == CLOSED_BOUNDARY,
values_at_nodes, copy=False)
maxvals = values_at_nodes.max(axis=1)
if type(maxvals.mask) is not np.bool_:
gooddata = np.logical_not(maxvals.mask)
out[gooddata] = maxvals.data[gooddata]
else:
if not maxvals.mask:
out[:] = maxvals.data
else:
np.amax(values_at_nodes, axis=1, out=out)
return out
def map_min_of_patch_nodes_to_patch(grid, var_name, ignore_closed_nodes=True,
out=None):
"""
Map the minimum value of nodes around a patch to the patch.
Construction::
map_min_of_patch_nodes_to_patch(grid, var_name,
ignore_closed_nodes=True, out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
var_name : array or field name
Values defined at nodes.
ignore_closed_nodes : bool
If True, do not incorporate closed nodes into calc. If all nodes are
masked at a patch, record zero if out is None or leave the existing
value if out.
out : ndarray, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
ndarray
Mapped values at patches.
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_min_of_patch_nodes_to_patch
>>> from landlab import RasterModelGrid, CLOSED_BOUNDARY
>>> rmg = RasterModelGrid((3, 4))
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 5., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> map_min_of_patch_nodes_to_patch(rmg, 'vals')
array([ 4., 3., 2.,
2., 1., 0.])
>>> rmg.at_node['vals'] = np.array([5., 4., 3., 2.,
... 5., 4., 3., 2.,
... 3., 2., 1., 0.])
>>> rmg.status_at_node[rmg.node_x > 1.5] = CLOSED_BOUNDARY
>>> ans = np.zeros(6, dtype=float)
>>> _ = map_min_of_patch_nodes_to_patch(rmg, 'vals', out=ans)
>>> ans # doctest: +NORMALIZE_WHITESPACE
array([ 4., 4., 0.,
2., 2., 0.])
LLCATS: PINF NINF MAP
"""
if out is None:
out = np.zeros(grid.number_of_patches, dtype=float)
if type(var_name) is str:
var_name = grid.at_node[var_name]
values_at_nodes = var_name[grid.nodes_at_patch]
if ignore_closed_nodes:
values_at_nodes = np.ma.masked_where(grid.status_at_node[
grid.nodes_at_patch] == CLOSED_BOUNDARY,
values_at_nodes, copy=False)
minvals = values_at_nodes.min(axis=1)
if type(minvals.mask) is not np.bool_:
gooddata = np.logical_not(minvals.mask)
out[gooddata] = minvals.data[gooddata]
else:
if not minvals.mask:
out[:] = minvals.data
else:
np.amin(values_at_nodes, axis=1, out=out)
return out
def map_link_vector_sum_to_patch(grid, var_name, ignore_inactive_links=True,
out=None):
"""
Map the vector sum of links around a patch to the patch.
The resulting vector is returned as a length-2 list, with the two
items being arrays of the x component and the y component of the resolved
vectors at the patches, respectively.
Construction::
map_link_vector_sum_to_patch(grid, var_name, ignore_inctive_links=True,
out=None)
Parameters
----------
grid : ModelGrid
A landlab ModelGrid.
var_name : array or field name
Values defined at links.
ignore_inactive_links : bool
If True, do not incorporate inactive links into calc. If all links are
inactive at a patch, record zero if out is None or leave the existing
value if out.
out : len-2 list of npatches-long arrays, optional
Buffer to place mapped values into or `None` to create a new array.
Returns
-------
len-2 list of arrays
[x_component_of_link_vals_at_patch, y_component_of_link_vals_at_patch].
Examples
--------
>>> import numpy as np
>>> from landlab.grid.mappers import map_link_vector_sum_to_patch
>>> from landlab import HexModelGrid
>>> from landlab import CLOSED_BOUNDARY, CORE_NODE, INACTIVE_LINK
>>> mg = HexModelGrid(4, 3)
>>> interior_nodes = mg.status_at_node == CORE_NODE
>>> exterior_nodes = mg.status_at_node != CORE_NODE
Add a ring of closed nodes at the edge:
>>> mg.status_at_node[exterior_nodes] = CLOSED_BOUNDARY
This gives us 5 core nodes, 7 active links, and 3 present patches
>>> (mg.number_of_core_nodes == 5 and mg.number_of_active_links == 7)
True
>>> A = mg.add_ones('link', 'vals')
>>> A.fill(9.) # any old values on the inactive links
>>> A[mg.active_links] = np.array([ 1., -1., 1., -1., -1., -1., -1.])
This setup should give present patch 0 pure east, patch 1 zero (vorticity),
and patch 2 westwards and downwards components.
>>> xcomp, ycomp = map_link_vector_sum_to_patch(mg, 'vals')
>>> np.allclose(xcomp[[6, 9, 10]], [2., 0., -1])
True
>>> np.allclose(ycomp[[6, 9, 10]]/np.sqrt(3.), [0., 0., -1.])
True
These are the patches with INACTIVE_LINKs on all three sides:
>>> absent_patches = np.array([0, 1, 2, 4, 8, 11, 12, 15, 16, 17, 18])
>>> np.allclose(xcomp[absent_patches], 0.)
True
>>> np.allclose(ycomp[absent_patches], 0.)
True
Now demonstrate the remaining functionality:
>>> A = mg.at_link['vals'].copy()
>>> A.fill(1.)
>>> _ = map_link_vector_sum_to_patch(mg, A, ignore_inactive_links=False,
... out=[xcomp, ycomp])
>>> np.allclose(xcomp[absent_patches], 0.)
False
>>> np.allclose(ycomp[absent_patches], 0.)
False
LLCATS: PINF LINF MAP
"""
if out is None:
out = [np.zeros(grid.number_of_patches, dtype=float),
np.zeros(grid.number_of_patches, dtype=float)]
else:
assert len(out) == 2
if type(var_name) is str:
var_name = grid.at_link[var_name]
angles_at_links = grid.angle_of_link # CCW round tail
hoz_cpt = np.cos(angles_at_links)
vert_cpt = np.sin(angles_at_links)
hoz_vals = var_name * hoz_cpt
vert_vals = var_name * vert_cpt
hoz_vals_at_patches = hoz_vals[grid.links_at_patch]
vert_vals_at_patches = vert_vals[grid.links_at_patch]
if ignore_inactive_links:
linkmask = grid.status_at_link[grid.links_at_patch] == INACTIVE_LINK
hoz_vals_at_patches = np.ma.array(hoz_vals_at_patches, mask=linkmask,
copy=False)
vert_vals_at_patches = np.ma.array(vert_vals_at_patches, mask=linkmask,
copy=False)
hoz_sum = np.sum(hoz_vals_at_patches, axis=1)
vert_sum = np.sum(vert_vals_at_patches, axis=1)
if type(hoz_sum.mask) is not np.bool_: # the 2 comps have same mask
gooddata = np.logical_not(hoz_sum.mask)
out[0][gooddata] = hoz_sum.data[gooddata]
out[1][gooddata] = vert_sum.data[gooddata]
else:
if not hoz_sum.mask:
out[0][:] = hoz_sum.data
out[1][:] = vert_sum.data
else:
hoz_sum = np.sum(hoz_vals_at_patches, axis=1, out=out[0])
vert_sum = np.sum(vert_vals_at_patches, axis=1, out=out[1])
return out
def dummy_func_to_demonstrate_docstring_modification(grid, some_arg):
"""A dummy function to demonstrate automated docstring changes.
Construction::
dummy_func_to_demonstrate_docstring_modification(grid, some_arg)
Parameters
----------
grid : ModelGrid
A Landlab modelgrid.
some_arg : whatever
A dummy argument.
Examples
--------
...
LLCATS: DEPR MAP
"""
pass