fourier¶
Class summary¶
FourierTransform (func[, args, inv, ...]) |
One dimensional Fourier transform using scipy.quad |
Function summary¶
cosine_transform (func, w[, args, a, b]) |
Fourier cosine transform |
func_mirror_for_even_weight (x, *myargs) |
Mirror a function abount the y-axis |
func_mirror_for_odd_weight (x, *myargs) |
Rotate function by 180 degrees (or mirror about x and y-axis in turn). |
imag_func (x, *myargs) |
Imaginary part of a function |
real_func (x, *myargs) |
Real part of a function |
sine_transform (func, w[, args, a, b]) |
Fourier sine transform |
v2dcosine_transform (f, s1, s2[, args, m, ...]) |
Cosine transform of f(x, y) at transform variable s1, s2 |
vcosine_transform (f, s[, args, m, ng, ...]) |
Cosine transform of f(x) at transform variable s |
Module listing¶
Fourier transforms.
-
class
geotecha.mathematics.fourier.
FourierTransform
(func, args=(), inv=False, func_is_real=False, func_is_imag=False, real_part_even=False, real_part_odd=False, imag_part_even=False, imag_part_odd=False, a=0.0, b=inf)[source]¶ Bases:
object
One dimensional Fourier transform using scipy.quad
Note that any function that can divide by zero may cause problems because QUADPACK includes the end points in integration.
Parameters: func : function
Function to transform. func is called by func(x, *args)
args : tuple, optional
tuple of arguments to pass to func. Default args=().
inv : True/False, optional
If True then the inverse Fourier transform will be performed. Default inv=False.
func_is_real : True/False, optional
If True then func is purely real. It returns a real number. default func_is_real=False.
func_is_imag : True/False, optional
If True then func is purely imaginary. It returns a real number that should be multiplied by i. Default func_is_imag=False
real_part_even : True/False, optional
If True then the real part of func is even. Default real_part_even=False.
real_part_odd : True/False, optional
If True then the real part of func is odd. Default real_part_odd=False.
imag_part_even : True/False, optional
If True then the imaginary part of func is even. Default imag_part_even=False.
imag_part_odd : True/False, optional
If True then the imaginary part of func is odd. Default imag_part_odd=False.
a, b : float, optional
Integration limits. Defualt a=0.0, b=np.inf
Attributes
inv_sign (float) The sign of some expressions change for the inverse fourier transform, inv_sign accounts for that sign change. If inv=True, inv_sign=-1; If inv=False, inv_sign=+1. inv_const (float) For inverse fourier transform all expressions are multiplied by 1/(2*pi). Methods
__call__
(s)Perform 1d Fourier transform at s imag_func
(x)Imaginary part of func mfe
(x)Mirror func for even weight function mfie
(x)Mirror imag(func) for even weight function mfio
(x)Mirror imag(func) for odd weight function mfo
(x)Mirror func for odd weight function mfre
(x)Mirror real(func) for even weight function mfro
(x)Mirror real(func) for odd weight function real_func
(x)Real part of func
-
geotecha.mathematics.fourier.
cosine_transform
(func, w, args=(), a=0.0, b=inf)[source]¶ Fourier cosine transform
Note that any function that can divide by zero may cause problems because QUADPACK includes the end points in integration.
Parameters: func : function/callable
Function to transform. func will be called func(x, *args). func must return a real.
w : float
Transform variable.
args : tuple, optional
Arguments to pass to func
a, b : float, optional
Integration limits. Defualt a=0.0, b=np.inf.
Returns: value : float
Value of transform at w
err : float
Error estimate from quadpack
Notes
The fourier cosine transform is given by:
\[F_c=\mathcal{F}_c\{f(x)\}(w) = \int_0^{\infty}f(x)\cos(wx)\,\mathrm{d}x\]
-
geotecha.mathematics.fourier.
func_mirror_for_even_weight
(x, *myargs)[source]¶ Mirror a function abount the y-axis
Given a composite function f(x) * w(x) where w(x) is an even weighting function, return g(x) such that g(x)*w(x) gives same value as f(-x)*w(-x). This can be useful in transforming a fourier cosine integral with negative integation limits to one with positive limits.
Parameters: x : float
Value to evaluate function at.
func : function/callable
Function to mirror. Always the first argument after x.
myargs : optional
Any remaining arguments will be passed to func.
Returns: out : ndarray
Value of func(-x, *myargs).
See also
func_mirror_for_odd_weight
- mirror for an odd weight function
Examples
>>> def f(x, a): ... return a*x+1 >>> func_mirror_for_even_weight(5, f, 2) -9 >>> def ff(x, a): ... return a*x + 1.j >>> func_mirror_for_even_weight(3, real_func, ff, 4) -12.0
-
geotecha.mathematics.fourier.
func_mirror_for_odd_weight
(x, *myargs)[source]¶ Rotate function by 180 degrees (or mirror about x and y-axis in turn).
Given a composite function f(x) * w(x) where w(x) is an odd weighting function, return g(x) such that g(x)*w(x) gives same value as f(-x)*w(-x). This can be useful in transforming a fourier sine integral with negative integration limits to one with positive limits.
Parameters: x : float
Value to evaluate function at.
func : function/callable
Function to mirror. Always the first argument after x.
myargs : optional
Any remaining arguments will be passed to func.
Returns: out : ndarray
Value of -func(-x, *myargs)
See also
func_mirror_for_even_weight
- mirror for an even wieght function
Examples
>>> def f(x, a): ... return a*x+1 >>> func_mirror_for_odd_weight(5, f, 2) 9 >>> def ff(x, a): ... return a*x + 1.j >>> func_mirror_for_odd_weight(3, real_func, ff, 4) 12.0
-
geotecha.mathematics.fourier.
imag_func
(x, *myargs)[source]¶ Imaginary part of a function
Basically return np.imag(func(x, *myargs[1:])) where func is the first argument after x.
Parameters: x : float
Value to evaluate function at.
func : function/callable
Function from which to return the imaginary part. Always the first argument after x
myargs : optional
Any remaining arguments will be passed to func(x, *myargs[1:]).
Returns: out : ndarray
Imaginary part of func(x, *myargs).
See also
real_func
- real part of function
Examples
>>> def f(x, a): ... return a*x+a*1.j >>> imag_func(2, f, 4) 4.0 >>> imag_func(3.j,f, 2) 8.0 >>> imag_func(np.array([3.j, 2.j]),f, 2) array([ 8., 6.])
-
geotecha.mathematics.fourier.
real_func
(x, *myargs)[source]¶ Real part of a function
Basically return np.real(func(x, *myargs[1:])) where func is the first argument after x.
Parameters: x : float
Value to evaluate function at.
func : function/callable
Function from which to return the real part. Always the first argument after x.
myargs : optional
Any remaining arguments will be passed to func(x, *myargs[1:]).
Returns: out : ndarray
Real part of func(x, *myargs)
See also
imag_func
- imaginary part of function
Examples
>>> def f(x, a): ... return a*x+a*1.j >>> real_func(2, f, 4) 8.0 >>> real_func(3.j,f, 2) 0.0 >>> real_func(np.array([3.j, 1+2.j]),f, 2) array([ 0., 2.])
-
geotecha.mathematics.fourier.
sine_transform
(func, w, args=(), a=0.0, b=inf)[source]¶ Fourier sine transform
Note that any function that can divide by zero may cause problems because QUADPACK includes the end points in integration.
Parameters: func : function/callable
Function to transform. func will be called func(x, *args). func must return a real.
w : float
Transform varibale.
args : tuple, optional
Arguments to pass to func
a, b : float, optional
Integration limits. Defualt a=0.0, b=np.inf.
Returns: value : float
Value of transform at w.
err : float
Error estimate from quadpack.
Notes
The fourier sine transform is given by:
\[F_s=\mathcal{F}_s\{f(x)\}(w) = \int_0^{\infty}f(x)\sin(wx)\,\mathrm{d}x\]
-
geotecha.mathematics.fourier.
v2dcosine_transform
(f, s1, s2, args=(), m=20, ng=20, shanks_ind=None)[source]¶ Cosine transform of f(x, y) at transform variable s1, s2
Vectorised 2d cosine transform.
Parameters: f : function or method
Function to apply 2D cosine trasnform to. f is called with f(x, y, *args).
s1, s2 : 1d array
Transformation variables. A grid of points will be made.
args : tuple, optional
Arguments to pass to f.
m : int, optional
Number of segments to break the integration interval into. Each segment will be between the zeros of the cos function, default m=20.
ng : [2-20, 32, 64, 100], optional
Number of gauss points to use in integration. Default ng=20.
shanks_ind : int, optional
Start position of intervals to start shanks extrapolation. default=None i.e. no extrapolation. Be careful when using shanks extrapolation; make sure you only begin to use it after the intgrand is well behaved.
Returns: f : 1d array of float
value of transform at s
Notes
Careful with singularities. Because there is no way to increase the integration points at a particular sport the infinite behaviur may not be captured well. For example x**-0.5 should transform to sqrt(pi/2*w) but due to the sinularity at x=0 it does not converge well even using ng=100.
-
geotecha.mathematics.fourier.
vcosine_transform
(f, s, args=(), m=20, ng=20, shanks_ind=None)[source]¶ Cosine transform of f(x) at transform variable s
This is a vectorized cosine transform.
Parameters: f : function or method
Function to apply cosine trasnform to. f is called with f(x, *args).
s : 1d array
Coordinate(s) to evaluate transform at.
args : tuple, optional
arguments to pass to f
m : int, optional
Number of segments to break the integration interval into. Each segment will be between the zeros of the cos function, Default m=20.
ng : [2-20, 32, 64, 100], optional
Number of gauss points to use in integration., Default ng=20.
shanks_ind : int, optional
Start position of intervals to start shanks extrapolation. Default shanks_ind=None i.e. no extrapolation. Be careful when using shanks extrapolation; make sure you only begin to use it after the intgrand is well behaved.
Returns: f : 1d array of float
Value of transform at s
Notes
Careful with singularities. Because there is no way to increase the integration points at a particular spot the infinite behaviur may not be captured well. For example x**-0.5 should transform to sqrt(pi/2*w) but due to the sinularity at x=0 it does not converge well even using ng=100.