swcc¶
Class summary¶
SWCC |
Base class for defining soil water characteristic curve |
SWCC_FredlundAndXing1994 (a, n, m[, ws, ...]) |
Soil water characteristic curve from Fredlund and Xing 1994 |
SWCC_PhamAndFredlund2008 (ws, a, b, wr, s1[, ...]) |
Soil water characteristic curve from Fredlund and Xing 2008 |
Function summary¶
karel_air_from_saturation (Sr[, qfit]) |
Relative air peremability (w.r.t. |
kwrel_from_discrete_swcc (psi, psi_swcc, vw_swcc) |
Relative permeability from integrating discrete soil water characteristic curve. |
Module listing¶
Some soil water characteristic curves (SWCC) for unsaturated soil
-
class
geotecha.constitutive_models.swcc.
SWCC
[source]¶ Bases:
object
Base class for defining soil water characteristic curve
Methods
dw_dpsi
(psi, **kwargs)Slope of SWCC dw/dpsi plot_model
(**kwargs)Plot the void ratio-permeability psi_and_w_for_plotting
(**kwargs)Suction and water content for plotting that plot the method psi_from_w
(w, **kwargs)Suction from water content w_from_psi
(psi, **kwargs)Water content from suction
-
class
geotecha.constitutive_models.swcc.
SWCC_FredlundAndXing1994
(a, n, m, ws=1.0, psir=1000000.0, correction=None)[source]¶ Bases:
geotecha.constitutive_models.swcc.SWCC
Soil water characteristic curve from Fredlund and Xing 1994
Parameters: a : float
Fitting parameter corresponding to soil suction at the inflection point.
n : float
Fitting parameter designating th rate of desaturation.
m : float
Third fitting parameter
ws : float, optional
Saturated water content. Default ws=1.0 i.e. basically a degree of saturation.
psir : float, optional
Residual suction. Default psir=1e6.
correction : float, optional
Manual correction factor. Default correction=None i.e. correction factor is caclulated.
Notes
The equation for the soil water charcteristic curve is given by:
\[w(\psi) = C(\psi) \frac{w_s} {\left[{\ln\left[{\exp(1)+ \left({\psi/a}\right)^n}\right]}\right]^m}\]where the correction factor is given by:
\[C(\psi) = \left[{1 - \frac{\ln\left({1+\psi/\psi_r}\right)} {\ln\left({1+10^6/\psi_r}\right)}}\right]\]SWCC_FredlundAndXing1994()
References
[R85] Fredlund, D.G., Anqing Xing, and Shangyan Huang. “Predicting the Permeability Function for Unsaturated Soils Using the Soil-Water Characteristic Curve.” Canadian Geotechnical Journal 31, no. 4 (1994): 533-46. doi:10.1139/t94-062. Methods
dw_dpsi
(psi, **kwargs)Slope of SWCC dw/dpsi k_from_psi
(psi, **kwargs)Relative permeability from suction plot_model
(**kwargs)Plot the void ratio-permeability psi_and_w_for_plotting
(**kwargs)Suction and water content for plotting psi_from_w
(w, **kwargs)Suction from water content w_from_psi
(psi, **kwargs)water content from suction -
dw_dpsi
(psi, **kwargs)[source]¶ Slope of SWCC dw/dpsi
Parameters: psi : float
Suction
Returns: dw_dpsi : float
Suction corresponding to psi
Examples
>>> a = SWCC_FredlundAndXing1994(a=3000, n=1.5, m=1, ws=60, correction=1) >>> a.dw_dpsi(2000) -0.00536... >>> b = SWCC_FredlundAndXing1994(a=100, n=2, m=4, correction=1) >>> b.dw_dpsi(90) -0.00640... >>> c = SWCC_FredlundAndXing1994(a=427, n=0.794, m=0.613, psir=3000) >>> c.dw_dpsi(10000) -1.317...e-05
-
k_from_psi
(psi, **kwargs)[source]¶ Relative permeability from suction
Parameters ———_ psi : float
Soil suction. Can be a 1d array.- aev : float, optional
- Air entry soil suction. Default aev=1.0
- npts : int, optional
- Numper of intervals to break integral into. Default npts=500.
Returns: k : float
Relative permeability.
Notes
The permability relative to the saturated value is given by:
\[k_r(\psi) = \left. \int_{\ln(\psi)}^{b} {\frac{\theta(e^y) - \theta(\psi)}{e^y} \theta^{\prime}(e^y)\,dy} \middle/ \int_{\ln(\psi_{\textrm{aev}})}^{b} {\frac{\theta(e^y) - \theta_s}{e^y} \theta^{\prime}(e^y)\,dy} \right.\]where, \(b=\ln(10^6)\), \(\theta(\psi)\) is the volumetric water content at a given soil suction. \(\psi_{\textrm{aev}}\) is the air entry value of soil suction (must be positive for the log integral to work). Each integral is performed by dividing the integration inteval into N sections, evaluating the integrand at the mid point of each inteval, then summing the areas of each section.
If you enter a single elment array you will get a scalar returned.
References
[R86] Fredlund, D.G., Anqing Xing, and Shangyan Huang. “Predicting the Permeability Function for Unsaturated Soils Using the Soil-Water Characteristic Curve. Canadian Geotechnical Journal 31, no. 4 (1994): 533-46. doi:10.1139/t94-062. Examples
>>> b = SWCC_FredlundAndXing1994(a=2.77, n=11.2, m=0.45, psir=300) >>> b.k_from_psi(4) 0.0520...
-
psi_and_w_for_plotting
(**kwargs)[source]¶ Suction and water content for plotting
Parameters: npts : int, optional
Number of points to return. Default npts=100.
xmin, xmax : float, optional
Range of x (i.e. effective stress) values from which to return points. Default xmin=1, xmax=1e6.
Returns: x, y : 1d ndarray
npts permeability, and void ratio values between xmin and xmax.
-
w_from_psi
(psi, **kwargs)[source]¶ water content from suction
Parameters: psi : float
Suction
Returns: w : float
Suction corresponding to psi
Examples
>>> a = SWCC_FredlundAndXing1994(a=3000, n=1.5, m=1, ws=60, correction=1) >>> a.w_from_psi(2000) 50.73... >>> b = SWCC_FredlundAndXing1994(a=100, n=2, m=4, correction=1) >>> b.w_from_psi(90) 0.395... >>> c = SWCC_FredlundAndXing1994(a=427, n=0.794, m=0.613, psir=3000) >>> c.w_from_psi(10000) 0.40...
-
-
class
geotecha.constitutive_models.swcc.
SWCC_PhamAndFredlund2008
(ws, a, b, wr, s1, psir=None, correction=None)[source]¶ Bases:
geotecha.constitutive_models.swcc.SWCC
Soil water characteristic curve from Fredlund and Xing 2008
Be careful interpreting results when suction is less than 1. At low suction values we expect wc approx equal to wsat-wr, but the s1 * log10(psi) term gives large negative numbers for psi<<1, whereas at psi=1 the term dissapears as expected.
Parameters: a : float
Curve fitting parameter.
b : float
Curve fitting parameter.
wr : float
Residual gravimetric water content.
s1 : float
Initial slope of SWCC (i.e. Cc/Gs)
ws : float
Saturated water content. Default ws=1.0 i.e. basically a degree of saturation.
psir : float, optional
Residual suction. Default psir=None, i.e. psir = (2.7*a) **(1/b).
correction : float, optional
Manual correction factor. Default correction=None i.e. correction factor is caclulated.
Notes
The equation for the soil water charcteristic curve is given by:
\[w(\psi) = C(\psi) \left[{\left({w_{sat} - S_l \log(\psi) -w_r}\right) \frac{a}{\psi^{b}+a} + w_r}\right]\]where the correction factor is given by:
\[C(\psi) = \left[{1 - \frac{\ln\left({1+\psi/\psi_r}\right)} {\ln\left({1+10^6/\psi_r}\right)}}\right]\]SWCC_PhamAndFredlund2008()
References
[R87] Pham, Hung Q., and Delwyn G. Fredlund. “Equations for the Entire Soil-Water Characteristic Curve of a Volume Change Soil.” Canadian Geotechnical Journal 45, no. 4 (April 1, 2008): 443-53. doi:10.1139/T07-117. Methods
dw_dpsi
(psi, **kwargs)Slope of SWCC dw/dpsi k_from_psi
(psi, **kwargs)Relative permeability from suction plot_model
(**kwargs)Plot the void ratio-permeability psi_and_w_for_plotting
(**kwargs)Suction and water content for plotting psi_from_w
(w, **kwargs)Suction from water content w_from_psi
(psi, **kwargs)water content from suction -
dw_dpsi
(psi, **kwargs)[source]¶ Slope of SWCC dw/dpsi
Parameters: psi : float
Suction
Returns: dw_dpsi : float
Suction corresponding to psi
# Examples
# ——–
# >>> a = SWCC_FredlundAndXing1994(a=3000, n=1.5, m=1, ws=60, correction=1)
# >>> a.dw_dpsi(2000)
# -0.00536...
# >>> b = SWCC_FredlundAndXing1994(a=100, n=2, m=4, correction=1)
# >>> b.dw_dpsi(90)
# -0.00640...
# >>> c = SWCC_FredlundAndXing1994(a=427, n=0.794, m=0.613, psir=3000)
# >>> c.dw_dpsi(10000)
# -1.317...e-05
-
k_from_psi
(psi, **kwargs)[source]¶ Relative permeability from suction
If k_from_psi returns a number greater than zero then try reducing aev.Returns: k : float
Relative permeability.
# Examples
# ——–
# >>> b = SWCC_FredlundAndXing1994(a=2.77, n=11.2, m=0.45, psir=300)
# >>> b.k_from_psi(4)
# 0.0520...
Notes
The permability relative to the saturated value is given by:
\[k_r(\psi) = \left. \int_{\ln(\psi)}^{b} {\frac{\theta(e^y) - \theta(\psi)}{e^y} \theta^{\prime}(e^y)\,dy} \middle/ \int_{\ln(\psi_{\textrm{aev}})}^{b} {\frac{\theta(e^y) - \theta_s}{e^y} \theta^{\prime}(e^y)\,dy} \right.\]where, \(b=\ln(10^6)\), \(\theta(\psi)\) is the volumetric water content at a given soil suction. \(\psi_{\textrm{aev}}\) is the air entry value of soil suction (must be positive for the log integral to work). Each integral is performed by dividing the integration inteval into N sections, evaluating the integrand at the mid point of each inteval, then summing the areas of each section.
If you enter a single element array you will get a scalar returned.
-
psi_and_w_for_plotting
(**kwargs)[source]¶ Suction and water content for plotting
Parameters: npts : int, optional
Number of points to return. Default npts=100.
xmin, xmax : float, optional
Range of x (i.e. effective stress) values from which to return points. Default xmin=1, xmax=1e6.
Returns: x, y : 1d ndarray
npts permeability, and void ratio values between xmin and xmax.
-
w_from_psi
(psi, **kwargs)[source]¶ water content from suction
Parameters: psi : float
Suction
Returns: w : float
Suction corresponding to psi
# Examples
# ——–
# >>> a = SWCC_FredlundAndXing1994(a=3000, n=1.5, m=1, ws=60, correction=1)
# >>> a.w_from_psi(2000)
# 50.73...
# >>> b = SWCC_FredlundAndXing1994(a=100, n=2, m=4, correction=1)
# >>> b.w_from_psi(90)
# 0.395...
# >>> c = SWCC_FredlundAndXing1994(a=427, n=0.794, m=0.613, psir=3000)
# >>> c.w_from_psi(10000)
# 0.40...
-
-
geotecha.constitutive_models.swcc.
karel_air_from_saturation
(Sr, qfit=0.5)[source]¶ Relative air peremability (w.r.t. dry_ka)
krel = (1-Sr)**0.5*(1-Sr**(1 / qfit))**(2*qfit)
Parameters: Sr : 1d array of float
Degree of saturation at which to calc relative permeability of air.
qfit : float, optional
Fitting parameter. Generally between between 0 and 1. Default qfit=1
References
[R89] Ba-Te, B., Limin Zhang, and Delwyn G. Fredlund. “A General Air-Phase Permeability Function for Airflow through Unsaturated Soils.” In Proceedings of Geofrontiers 2005 Cngress, 2961-85. Austin, Tx: ASCE, 2005. doi:10.1061/40787(166)29.
-
geotecha.constitutive_models.swcc.
kwrel_from_discrete_swcc
(psi, psi_swcc, vw_swcc)[source]¶ Relative permeability from integrating discrete soil water characteristic curve.
Parameters: psi: float
Suction values to calculate relative permeability at. Suction is positve.
psi_swcc : 1d array of float
Suction values defining soil water charteristic curve.
vw_swcc : 1d array of float
Volumetric water content corresponding to psi_swcc
Returns: krel : 1d array of float
relative permeability values corresponding to psi.
Notes
This integrates the whole SWCC. Initial slope of SWCC is non-zero then peremability reduction with suction will commence straight from first value of psi_swcc.
Uses _[1] method but does it assuming taht you already have all the SWCC points (_[1] can calculate volumetric water content from suction). Main differnce is that in _[1] vw and dvw/dpsi at the midpoint are calculated analytically, whereas here midpoint value is half the segment endpoint values, and slope is approx value at segmetn endpoint.
Will return scalar if scalar or single elemtn array is input.
If you get some sort of index error then probably your pis input is beyond your data range.
References
[R90] Fredlund, D.G., Anqing Xing, and Shangyan Huang. “Predicting the Permeability Function for Unsaturated Soils Using the Soil-Water Characteristic Curve. Canadian Geotechnical Journal 31, no. 4 (1994): 533-46. doi:10.1139/t94-062. Examples
>>> b = SWCC_FredlundAndXing1994(a=2.77, n=11.2, m=0.45, psir=300) >>> x = np.logspace(-3,6,500) >>> y = b.w_from_psi(x) >>> kwrel_from_discrete_swcc(4, x, y) 0.0550...