Source code for flownetpy.tests.test_kuramoto

from hypothesis import given, assume
import hypothesis.strategies as st


from nose.tools import *

from flownetpy import KuramotoNetwork
from flownetpy.kuramotonetwork import _mod_pi, _omega, _random_stableop_initguess
import numpy as np
import networkx as nx


[docs]class TestHelperfuncs: """ Test the helpedr functions""" @given(x=st.floats(min_value=-10000, max_value=10000))
[docs] def test_mod_pi_range(self, x): assert(np.abs(_mod_pi(x) < np.pi))
@given(x=st.lists(st.floats(min_value=-10000, max_value=10000), min_size = 1, max_size = 100))
[docs] def test_mod_pi_sanity(self, x): assert(np.all(np.abs(_mod_pi(x) < np.pi)))
@given(m=st.integers(min_value=-10000, max_value=10000))
[docs] def test_mod_pi_even_pi(self, m): """_mod_pi(even_multiple_of_pi)==0""" assert_almost_equal(_mod_pi(2 * m * np.pi), 0)
@given(m=st.integers(min_value=-10000, max_value=10000))
[docs] def test_mod_pi_odd_pi(self, m): """_mod_pi(odd_multiple_of_pi)==+/- 1""" assert_almost_equal( np.abs(_mod_pi((2 * m + 1) * np.pi)), np.pi)
@given(size=st.integers(min_value=3))
[docs] def test_random_stableop_initguess(self, size): """this function should return angles with |successive difference| < pi/2 """ arr = _random_stableop_initguess(size) assert( (np.abs(_mod_pi(arr - np.roll(arr, 1))) <= np.pi / 2).all())
@given(delta=st.floats(min_value=-np.pi / 2, max_value=np.pi / 2), size=st.integers(min_value=4, max_value=100))
[docs] def test_omega_equispaced(self, delta, size): """ checks omega of a ring network with equispaced thetas """ assume(not np.allclose(((size - 1) * delta / np.pi - 1) % 2, 0)) self.ring_net = nx.cycle_graph(size) nnodes = self.ring_net.number_of_nodes() thetas = np.arange(nnodes) * delta assert_almost_equal(_omega(self.ring_net, [np.arange(size)], thetas)[0], ((nnodes - 1) * delta + _mod_pi((1 - nnodes) * delta)) / 2 / np.pi)
[docs]class TestCore:
[docs] def setUp(self): self.K_stable = 10 # setup a 2-node graph G = nx.Graph() G.add_edge(1, 2, weight=self.K_stable) inputs = {1: 1, 2: -1} self.two_node_net = KuramotoNetwork(G, inputs, weight='weight') # setup a ring network with inputs -1 +1 -1 +1... self.ring_size = 8 ring_graph = nx.cycle_graph(self.ring_size) for u, v in ring_graph.edges(): ring_graph[u][v]['weight'] = self.K_stable inputs = { node: (node % 2 - 0.5) * 2 for node in np.arange(self.ring_size)} self.ring_net_even = KuramotoNetwork( ring_graph, inputs, weight='weight') # setup a ring network with inputs +1 +1 +1 +1 -1 -1 -1 -1 ... inputs = {node: (int(node < self.ring_size / 2) - 0.5) * 2 for node in np.arange(self.ring_size)} self.ring_net_odd = KuramotoNetwork( ring_graph, inputs, weight='weight') # Test fixed points for simple networks
@given(st.floats(min_value=0.0001, max_value=0.1))
[docs] def test_2node_fixed_point(self, dK): """Fixed point should be 1""" for u, v in self.two_node_net.edges(): self.two_node_net[u][v]['weight'] = 1+dK fp_2node, data = self.two_node_net.steady_flows( initguess=np.array([0, 0])) assert_almost_equal(fp_2node[(1, 2)], 1, places=4)
@given(st.floats(min_value=0.0001, max_value=0.1))
[docs] def test_even_ring_fixed_point(self, dK): """The flows should look like -0.5 0.5 -0.5 0.5...""" for u, v in self.ring_net_even.edges(): self.ring_net_even[u][v]['weight'] = 0.5 + dK fp_ring, data = self.ring_net_even.steady_flows(initguess=np.zeros( self.ring_net_even.number_of_nodes())) assert(np.allclose([flow - (u % 2 - 0.5) for (u, v), flow in fp_ring.items()], 0, atol=1e-6))
@given(st.floats(min_value=0.0001, max_value=0.1))
[docs] def test_odd_ring_fixed_point(self, dK): """The flows should look like 1 -1 1 -1 ...""" for u, v in self.ring_net_odd.edges(): self.ring_net_odd[u][v]['weight'] = self.ring_size/4 + dK nnodes = self.ring_net_odd.number_of_nodes() fp_ring, data = self.ring_net_odd.steady_flows( initguess=np.zeros(nnodes)) fp_ring_array = [fp_ring[(i, (i + 1) % nnodes)] for i in range(nnodes)] fp_exact_array = [-1, 0, 1, 2, 1, 0, -1, -2] assert(np.allclose(fp_ring_array, fp_exact_array, atol=1e-6)) # Test that no fixed point below critical coupling
@given(st.floats(min_value=0.0001, max_value=0.1))
[docs] def test_2node_unstable(self, dK): for u, v in self.two_node_net.edges(): self.two_node_net[u][v]['weight'] = 1 - dK fp, data = self.two_node_net.steady_flows( initguess=np.array([0, 0])) assert_is_none(fp)
@given(st.floats(min_value=0.0001, max_value=0.1))
[docs] def test_even_ring_unstable(self, dK): for u, v in self.ring_net_even.edges(): self.ring_net_even[u][v]['weight'] = 0.5 - dK fp, data = self.ring_net_even.steady_flows() assert_is_none(fp)
@given(st.floats(min_value=0.0001, max_value=0.1))
[docs] def test_odd_ring_unstable(self, dK): for u, v in self.ring_net_odd.edges(): self.ring_net_odd[u][v]['weight'] = self.ring_size/4 - dK fp, data = self.ring_net_odd.steady_flows() assert_is_none(fp)

flownetpy

A python package for flow network simulations

Navigation


Fork me on GitHub