fito.model package¶
Submodules¶
fito.model.model module¶
-
class
fito.model.model.
BaseModelField
(pos=None, default=<object object>, base_type=None, serialize=True, grid=None, *args, **kwargs)[source]¶
-
class
fito.model.model.
Model
(*args, **kwargs)[source]¶ Bases:
fito.operations.operation.Operation
- Model fields:
- out_data_store = BaseSpecField(default=None, serialize=False)
-
fito.model.model.
ModelField
(pos=None, default=<object object>, base_type=None, serialize=True, grid=None)[source]¶
fito.model.scikit_learn module¶
-
class
fito.model.scikit_learn.
GradientBoostingClassifier
(*args, **kwargs)[source]¶ Bases:
fito.model.scikit_learn.SKLearnModel
- GradientBoostingClassifier fields:
- init = PrimitiveField(default=None) learning_rate = ModelParameter(default=0.1) loss = ModelParameter(default=deviance) max_depth = ModelParameter(default=3) max_features = ModelParameter(default=None) max_leaf_nodes = ModelParameter(default=None) min_samples_leaf = ModelParameter(default=1) min_samples_split = ModelParameter(default=2) min_weight_fraction_leaf = ModelParameter(default=0.0) n_estimators = ModelParameter(default=100) out_data_store = BaseSpecField(default=None, serialize=False) presort = PrimitiveField(default=auto) random_state = PrimitiveField(default=None) subsample = ModelParameter(default=1.0) verbose = PrimitiveField(default=0) warm_start = PrimitiveField(default=False)
-
init
= PrimitiveField(default=None)¶
-
learning_rate
= ModelParameter(default=0.1)¶
-
loss
= ModelParameter(default=deviance)¶
-
max_depth
= ModelParameter(default=3)¶
-
max_features
= ModelParameter(default=None)¶
-
max_leaf_nodes
= ModelParameter(default=None)¶
-
min_samples_leaf
= ModelParameter(default=1)¶
-
min_samples_split
= ModelParameter(default=2)¶
-
min_weight_fraction_leaf
= ModelParameter(default=0.0)¶
-
n_estimators
= ModelParameter(default=100)¶
-
presort
= PrimitiveField(default=auto)¶
-
random_state
= PrimitiveField(default=None)¶
-
subsample
= ModelParameter(default=1.0)¶
-
verbose
= PrimitiveField(default=0)¶
-
warm_start
= PrimitiveField(default=False)¶
-
class
fito.model.scikit_learn.
LinearRegression
(*args, **kwargs)[source]¶ Bases:
fito.model.scikit_learn.SKLearnModel
- LinearRegression fields:
- copy_X = PrimitiveField(default=True) fit_intercept = ModelParameter(default=True) n_jobs = PrimitiveField(default=1) normalize = ModelParameter(default=False) out_data_store = BaseSpecField(default=None, serialize=False)
-
copy_X
= PrimitiveField(default=True)¶
-
fit_intercept
= ModelParameter(default=True)¶
-
n_jobs
= PrimitiveField(default=1)¶
-
normalize
= ModelParameter(default=False)¶
-
class
fito.model.scikit_learn.
LogisticRegression
(*args, **kwargs)[source]¶ Bases:
fito.model.scikit_learn.SKLearnModel
- LogisticRegression fields:
- C = ModelParameter(default=1.0) class_weight = ModelParameter(default=None) dual = ModelParameter(default=False) fit_intercept = ModelParameter(default=True) intercept_scaling = ModelParameter(default=1) max_iter = PrimitiveField(default=100) multi_class = ModelParameter(default=ovr) n_jobs = PrimitiveField(default=1) out_data_store = BaseSpecField(default=None, serialize=False) penalty = ModelParameter(default=l2) random_state = PrimitiveField(default=None) solver = PrimitiveField(default=liblinear) tol = PrimitiveField(default=0.0001) verbose = PrimitiveField(default=0) warm_start = PrimitiveField(default=False)
-
C
= ModelParameter(default=1.0)¶
-
class_weight
= ModelParameter(default=None)¶
-
dual
= ModelParameter(default=False)¶
-
fit_intercept
= ModelParameter(default=True)¶
-
intercept_scaling
= ModelParameter(default=1)¶
-
max_iter
= PrimitiveField(default=100)¶
-
multi_class
= ModelParameter(default=ovr)¶
-
n_jobs
= PrimitiveField(default=1)¶
-
penalty
= ModelParameter(default=l2)¶
-
random_state
= PrimitiveField(default=None)¶
-
solver
= PrimitiveField(default=liblinear)¶
-
tol
= PrimitiveField(default=0.0001)¶
-
verbose
= PrimitiveField(default=0)¶
-
warm_start
= PrimitiveField(default=False)¶
-
class
fito.model.scikit_learn.
SKLearnModel
(*args, **kwargs)[source]¶ Bases:
fito.model.model.Model
- SKLearnModel fields:
- out_data_store = BaseSpecField(default=None, serialize=False)
fito.model.word2vec module¶
-
class
fito.model.word2vec.
Word2Vec
(*args, **kwargs)[source]¶ Bases:
fito.model.model.Model
- Word2Vec fields:
- out_data_store = BaseSpecField(default=None, serialize=False) sentences = CollectionField(0, serialize=False) train_iterator = PrimitiveField(default=None, serialize=False) size = ModelParameter(1, default=100) alpha = ModelParameter(2, default=0.025) window = ModelParameter(3, default=5) min_count = ModelParameter(4, default=5) max_vocab_size = ModelParameter(5, default=None) sample = ModelParameter(6, default=0.001) seed = ModelParameter(7, default=1) workers = PrimitiveField(8, default=3, serialize=False)
-
alpha
= ModelParameter(2, default=0.025)¶
-
max_vocab_size
= ModelParameter(5, default=None)¶
-
min_count
= ModelParameter(4, default=5)¶
-
sample
= ModelParameter(6, default=0.001)¶
-
seed
= ModelParameter(7, default=1)¶
-
sentences
= CollectionField(0, serialize=False)¶
-
size
= ModelParameter(1, default=100)¶
-
train_iterator
= PrimitiveField(default=None, serialize=False)¶
-
window
= ModelParameter(3, default=5)¶
-
workers
= PrimitiveField(8, default=3, serialize=False)¶