Describe a component with a constant failure rate.
This class is used to create all the components of a system.
the name of the component. (It has to be a unique name for the whole system)
the constant failure rate of the component
the constant maintainability rate of the component
whether the component is avaible at t=0 or not
Examples
>>> motor = Component('M', 1e-4, 3e-2)
>>> motor.lambda_
0.0001
Compute the availability of the component at t
This method compute the availability of the component at t.
Parameters : | t (int or Symbol) |
---|---|
Returns: | out (float or symbolic expression) – The availability calculated for the given t |
Examples
>>> motor = Component('M', 1e-4, 3e-2)
>>> t = Symbol('t', positive=True)
>>> motor.availability(t)
0.00332225913621263*exp(-0.0301*t) + 0.996677740863787
>>> motor.availability(1000)
0.996677740863788
Compute the maintainability of the component at t
This method compute the maintainability of the component at t.
Parameters : | t (int or Symbol) |
---|---|
Returns: | out (float or symbolic expression) – The maintainability calculated for the given t |
Examples
>>> motor = Component('M', 1e-4, 3e-2)
>>> t = Symbol('t', positive=True)
>>> motor.maintainability(t)
-exp(-0.03*t) + 1.0
>>> motor.maintainability(1000)
0.999999999999906
Compute the Mean-Time-To-Failure of the component
when the failure rate (\(\lambda\) is constant)
Returns: | out (float) – The component MTTF |
---|
Examples
>>> motor = Component('M', 1e-4, 3e-2)
>>> motor.mttf
10000.0
Compute the Mean-Time-To-Repair of the component
when the failure rate (\(\mu\) is constant)
Returns: | out (float) – The component MTTR |
---|
Examples
>>> motor = Component('M', 1e-4, 3e-2)
>>> motor.mttr
33.333333333333336
Compute the reliability of the component at t
This method compute the reliability of the component at t.
Parameters : | t (float or Symbol) |
---|---|
Returns: | out (float or symbolic expression) – The reliability calculated for the given t |
Examples
>>> motor = Component('M', 1e-4, 3e-2)
>>> t = Symbol('t', positive=True)
>>> motor.reliability(t)
exp(-0.0001*t)
>>> motor.reliability(1000)
0.904837418035960