eztable.columns module¶
-
class
eztable.columns.ArrayColumn(name, values=None, column_type=None)[source]¶ Bases:
array.array-
PY_TYPE_MAPPING= {'L': <class 'int'>, 'c': <class 'str'>, 'l': <class 'int'>, 'd': <class 'float'>, 'u': <function u at 0x7f2f23a76f28>, 'b': <class 'int'>, 'H': <class 'int'>, 'h': <class 'int'>, 'B': <class 'int'>, 'i': <class 'int'>, 'f': <class 'float'>, 'I': <class 'int'>}¶
-
column_type¶
-
description¶
-
-
class
eztable.columns.Column(name, values=None, column_type=<class 'object'>)[source]¶ Bases:
list-
description¶
-
-
class
eztable.columns.DerivedColumn(name, inputs, func, column_type=<class 'object'>)[source]¶ Bases:
object-
description¶
-
-
class
eztable.columns.DerivedTableColumn(indices_func, column)[source]¶ Bases:
objectNot so much a derived column, but a column on a derived table
-
column_type¶
-
description¶
-
name¶
-
-
class
eztable.columns.FunctionColumn[source]¶ Bases:
objectBase class for columns which simply apply a function to another column.
-
column_type¶
-
description¶
-
name¶
-
-
class
eztable.columns.NormalizedColumn(column, normal=1.0)[source]¶ Bases:
eztable.columns.FunctionColumnNormalize all of the values in a column
Remaps the lowst value to 0, and the highest value to self._normal, lineraly scaling all of the values inbetween.
-
class
eztable.columns.StandardizedColumn(column, deviation=1.0)[source]¶ Bases:
eztable.columns.FunctionColumnStandardize all of the values in a column
Remaps the average value to zero, and normalizes all of the scores.