slicer - Command Line Tool

Cubes comes with a command line tool that can:

  • run OLAP server
  • build and compute cubes
  • validate and translate models


slicer command [command_options]


slicer command sub_command [sub_command_options]

Commands are:

Command Description
serve Start OLAP server
model validate Validates logical model for OLAP cubes
model json Create JSON representation of a model (can be used) when model is a directory.
test Test the configuration and model against backends
ddl Generate DDL for SQL backend (experimental)
edit Launches the cubes modeller (if installed) (experimental)


Run Cubes OLAP HTTP server.

Example server configuration file slicer.ini:

host: localhost
port: 5000
reload: yes
log_level: info

url: sqlite:///tutorial.sqlite
view_prefix: vft_

path: models/model_04.json

To run local server:

slicer serve slicer.ini

In the [server] section, space separated list of modules to be imported can be specified under option modules:



Use –debug option if you would like to see more detailed error messages in the browser (generated by Flask).

For more information about OLAP HTTP server see OLAP Server

model convert


slicer model convert --format bundle model.json model.cubesmodel
slicer model convert model.cubesmodel > model.json

Optional arguments:

--format              model format: json or bundle
--force               replace the target if exists

model validate


slicer model validate /path/to/model/directory
slicer model validate model.json
slicer model validate

Optional arguments:

-d, --defaults        show defaults
-w, --no-warnings     disable warnings
                      model translation file

For more information see Model Validation in Logical Model and Metadata

Example output:

loading model wdmmg_model.json
cubes: 1
dimensions: 5
found 3 issues
validation results:
warning: No hierarchies in dimension 'date', flat level 'year' will be used
warning: Level 'year' in dimension 'date' has no key attribute specified
warning: Level 'from' in dimension 'from' has no key attribute specified
0 errors, 3 warnings

The tool output contains recommendation whether the model can be used:

  • model can be used - if there are no errors, no warnings and no defaults used, mostly when the model is explicitly described in every detail
  • model can be used, make sure that defaults reflect reality - there are no errors, no warnings, but the model might be not complete and default assumptions are applied
  • not recommended to use the model, some issues might emerge - there are just warnings, no validation errors. Some queries or any other operations might produce invalid or unexpected output
  • model can not be used - model contain errors and it is unusable


Every cube in the model is tested through the backend whether it can be accessed and whether the mappings reflect reality.


slicer test [-h] [-E EXCLUDE_STORES] config

Positional arguments:

config                server confuguration .ini file

Optional arguments:




This is experimental command.

Generates DDL schema of a model for SQL backend


slicer ddl [-h] [--dimension-prefix DIMENSION_PREFIX]
          [--dimension-suffix DIMENSION_SUFFIX]
          [--fact-prefix FACT_PREFIX]
          [--fact-suffix FACT_SUFFIX]
          [--backend BACKEND]
          url model

positional arguments:

url                   SQL database connection URL
model                 model reference - can be a local file path or URL

optional arguments:

--dimension-prefix DIMENSION_PREFIX
                    prefix for dimension tables
--fact-prefix FACT_PREFIX
                    prefix for fact tables
--backend BACKEND     backend name (currently limited only to SQL backends)



slicer denormalize [-h] [-p PREFIX] [-f] [-m] [-i] [-s SCHEMA]
                   [-c CUBE] config

positional arguments:

config                slicer confuguration .ini file

optional arguments:

-h, --help            show this help message and exit
-p PREFIX, --prefix PREFIX
                      prefix for denormalized views (overrides config value)
-f, --force           replace existing views
-m, --materialize     create materialized view (table)
-i, --index           create index for key attributes
-s SCHEMA, --schema SCHEMA
                      target view schema (overrides config value)
-c CUBE, --cube CUBE  cube(s) to be denormalized, if not specified then all
                    in the model


If you plan to use denormalized views, you have to specify it in the configuration in the [workspace] section:

denormalized_view_prefix = mft_
denormalized_view_schema = denorm_views

# This switch is used by the browser:
use_denormalization = yes

The denormalization will create tables like denorm_views.mft_contracts for a cube named contracts. The browser will use the view if option use_denormalization is set to a true value.

Denormalize all cubes in the model:

slicer denormalize slicer.ini

Denormalize only one cube:

slicer denormalize -c contracts slicer.ini

Create materialized denormalized view with indexes:

slicer denormalize --materialize --index slicer.ini

Replace existing denormalized view of a cube:

slicer denormalize --force -c contracts slicer.ini


Schema where denormalized view is created is schema specified in the configuration file. Schema is shared with fact tables and views. If you want to have views in separate schema, specify denormalized_view_schema option in the configuration.

If for any specific reason you would like to denormalize into a completely different schema than specified in the configuration, you can specify it with the --schema option.

View name

By default, a view name is the same as corresponding cube name. If there is denormalized_view_prefix option in the configuration, then the prefix is prepended to the cube name. Or it is possible to override the option with command line argument --prefix.


The tool will not allow to create view if it’s name is the same as fact table name and is in the same schema. It is not even possible to --force it. A view prefix or different schema has to be specified.

Table Of Contents

Previous topic

Server Deployment

Next topic

SQL Backend

This Page