Source code for bob.learn.boosting.LogitLoss

from . import LossFunction

import numpy


[docs]class LogitLoss(LossFunction): """ The class to implement the logit loss function for the boosting framework."""
[docs] def loss(self, targets, scores): """The function computes the logit loss values using prediction scores and targets. Keyword parameters: targets (float <#samples, #outputs>): The target values that should be reached. scores (float <#samples, #outputs>): The scores provided by the classifier. Returns (float <#samples, #outputs>): The loss values for the samples, which is always >= 0 """ e = numpy.exp(-(targets * scores)) return numpy.log(1. + e)
[docs] def loss_gradient(self, targets, scores): """The function computes the gradient of the logit loss function using prediction scores and targets. Keyword parameters: targets (float <#samples, #outputs>): The target values that should be reached. scores (float <#samples, #outputs>): The scores provided by the classifier. Returns loss (float <#samples, #outputs>): The gradient of the loss based on the given scores and targets. """ e = numpy.exp(-(targets * scores)) denom = 1. / (1. + e) return -targets * e * denom