Source code for bob.bio.face.extractor.Eigenface

#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# Manuel Guenther <Manuel.Guenther@idiap.ch>

import numpy

import bob.learn.linear
import bob.io.base

from bob.bio.base.extractor import Extractor

import logging
logger = logging.getLogger("bob.bio.face")

class Eigenface (Extractor):
  """Performs a principal component analysis (PCA) on the given data.

  This algorithm computes a PCA projection (:py:class:`bob.learn.linear.PCATrainer`) on the given training images, and projects the images into face space.
  In opposition to :py:class:`bob.bio.base.algorithm.PCA`, here the eigenfces are used as features, i.e., to apply advanced face recognition algorithms on top of them.

  **Parameters:**

  subspace_dimension : int or float
    If specified as ``int``, defines the number of eigenvectors used in the PCA projection matrix.
    If specified as ``float`` (between 0 and 1), the number of eigenvectors is calculated such that the given percentage of variance is kept.

  kwargs : ``key=value`` pairs
    A list of keyword arguments directly passed to the :py:class:`bob.bio.base.extractor.Extractor` base class constructor.
  """

  def __init__(self, subspace_dimension):
    # We have to register that this function will need a training step
    Extractor.__init__(self, requires_training = True, subspace_dimension = subspace_dimension)
    self.subspace_dimension = subspace_dimension


  def _check_data(self, data):
    """Checks that the given data are appropriate."""
    assert isinstance(data, numpy.ndarray)
    assert data.ndim == 2
    assert data.dtype == numpy.float64


[docs] def train(self, training_images, extractor_file): """Generates the PCA covariance matrix and writes it into the given extractor_file. Beforehand, all images are turned into a 1D pixel vector. **Parameters:** training_images : [2D :py:class:`numpy.ndarray`] A list of 2D training images to train the PCA projection matrix with. extractor_file : str A writable file, into which the PCA projection matrix (as a :py:class:`bob.learn.linear.Machine`) will be written. """ [self._check_data(image) for image in training_images] # Initializes an array for the data data = numpy.vstack([image.flatten() for image in training_images]) logger.info(" -> Training LinearMachine using PCA (SVD)") t = bob.learn.linear.PCATrainer() self.machine, variances = t.train(data) # compute variance percentage, if desired if isinstance(self.subspace_dimension, float): cummulated = numpy.cumsum(variances) / numpy.sum(variances) for index in range(len(cummulated)): if cummulated[index] > self.subspace_dimension: self.subspace_dimension = index break self.subspace_dimension = index logger.info(" -> Keeping %d eigenvectors" % self.subspace_dimension) # Machine: get shape, then resize self.machine.resize(self.machine.shape[0], self.subspace_dimension) self.machine.save(bob.io.base.HDF5File(extractor_file, "w"))
[docs] def load(self, extractor_file): """Reads the PCA projection matrix from file. **Parameters:** extractor_file : str An existing file, from which the PCA projection matrix are read. """ # read PCA projector self.machine = bob.learn.linear.Machine(bob.io.base.HDF5File(extractor_file))
def __call__(self, image): """__call__(image) -> feature Projects the given image using the stored covariance matrix. Beforehand, the image is turned into a 1D pixel vector. **Parameters:** image : 2D :py:class:`numpy.ndarray` (floats) The image to extract the eigenface feature from. **Returns:** feature : 1D :py:class:`numpy.ndarray` (floats) The extracted eigenface feature. """ self._check_data(image) # Projects the data return self.machine(image.flatten())