Source code for bob.bio.face.algorithm.Histogram

#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# Manuel Guenther <Manuel.Guenther@idiap.ch>

import bob.math

import numpy

from bob.bio.base.algorithm import Algorithm

class Histogram (Algorithm):
  """Computes the distance between histogram sequences.

  Both sparse and non-sparse representations of histograms are supported.
  For enrollment, to date only the averaging of histograms is implemented.

  **Parameters:**

  distance_function : function
    The function to be used to compare two histograms.
    This function should accept sparse histograms.

  is_distance_function : bool
    Is the given ``distance_function`` distance function (lower values are better) or a similarity function (higher values are better)?

  multiple_probe_scoring : str or ``None``
    The way, scores are fused when multiple probes are available.
    See :py:func:`bob.bio.base.score_fusion_strategy` for possible values.
  """

  def __init__(
      self,
      distance_function = bob.math.chi_square,
      is_distance_function = True,
      multiple_probe_scoring = 'average'
  ):

    # call base class constructor
    Algorithm.__init__(
        self,

        distance_function = str(distance_function),
        is_distance_function = is_distance_function,

        multiple_model_scoring = None,
        multiple_probe_scoring = multiple_probe_scoring
    )

    # remember distance function
    self.distance_function = distance_function
    self.factor =  -1. if is_distance_function else 1


  def _is_sparse(self, feature):
    assert isinstance(feature, numpy.ndarray)
    return feature.ndim == 2

  def _check_feature(self, feature, sparse):
    assert isinstance(feature, numpy.ndarray)
    if sparse:
      # check that we have a 2D array
      assert feature.ndim == 2
      assert feature.shape[0] == 2
    else:
      assert feature.ndim == 1


[docs] def enroll(self, enroll_features): """enroll(enroll_features) -> model Enrolls a model by taking the average of all histograms. enroll_features : [1D or 2D :py:class:`numpy.ndarray`] The histograms that should be averaged. Histograms can be specified sparse (2D) or non-sparse (1D) **Returns:** model : 1D or 2D :py:class:`numpy.ndarray` The averaged histogram, sparse (2D) or non-sparse (1D). """ assert len(enroll_features) sparse = self._is_sparse(enroll_features[0]) [self._check_feature(feature, sparse) for feature in enroll_features] if sparse: # get all indices for the sparse model values = {} # iterate through all sparse features for feature in enroll_features: # collect the values by index for j in range(feature.shape[1]): index = int(feature[0,j]) value = feature[1,j] / float(len(enroll_features)) # add up values if index in values: values[index] += value else: values[index] = value # create model containing all the used indices model = numpy.ndarray((2, len(values)), dtype = numpy.float64) for i, index in enumerate(sorted(values.keys())): model[0,i] = index model[1,i] = values[index] else: model = numpy.zeros(enroll_features[0].shape, dtype = numpy.float64) # add up models for feature in enroll_features: model += feature # normalize by number of models model /= float(len(enroll_features)) # return averaged model return model
[docs] def read_probe(self, probe_file): """read_probe(probe_file) -> probe Reads the probe feature from the given file. **Parameters:** probe_file : str or :py:class:`bob.io.base.HDF5File` The file (open for reading) or the name of an existing file to read from. **Returns:** probe : 1D or 2D :py:class:`numpy.ndarray` The probe read by the :py:meth:`read_probe` function. """ return bob.bio.base.load(probe_file)
[docs] def score(self, model, probe): """score(model, probe) -> score Computes the score of the probe and the model using the desired histogram distance function. The resulting score is the negative distance, if ``is_distance_function = True``. Both sparse and non-sparse models and probes are accepted, but their sparseness must agree. **Parameters:** model : 1D or 2D :py:class:`numpy.ndarray` The model enrolled by the :py:meth:`enroll` function. probe : 1D or 2D :py:class:`numpy.ndarray` The probe read by the :py:meth:`read_probe` function. **Returns:** score : float The resulting similarity score. """ sparse = self._is_sparse(probe) self._check_feature(model, sparse) self._check_feature(probe, sparse) if sparse: # assure that the probe is sparse as well return self.factor * self.distance_function(model[0,:], model[1,:], probe[0,:], probe[1,:]) else: return self.factor * self.distance_function(model, probe)
# overwrite functions to avoid them being documented.
[docs] def train_projector(*args, **kwargs) : raise NotImplementedError("This function is not implemented and should not be called.")
[docs] def load_projector(*args, **kwargs) : pass
[docs] def project(*args, **kwargs) : raise NotImplementedError("This function is not implemented and should not be called.")
[docs] def write_feature(*args, **kwargs) : raise NotImplementedError("This function is not implemented and should not be called.")
[docs] def read_feature(*args, **kwargs) : raise NotImplementedError("This function is not implemented and should not be called.")
[docs] def train_enroller(*args, **kwargs) : raise NotImplementedError("This function is not implemented and should not be called.")
[docs] def load_enroller(*args, **kwargs) : pass
[docs] def score_for_multiple_models(*args, **kwargs) : raise NotImplementedError("This function is not implemented and should not be called.")