Source code for bob.bio.csu.preprocessor.LDAIR

#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# @author: Manuel Guenther <Manuel.Guenther@idiap.ch>
# @date: Mon Oct 29 09:27:59 CET 2012
#
# Copyright (C) 2011-2012 Idiap Research Institute, Martigny, Switzerland
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

import facerec2010
import pyvision
import numpy
import bob.bio.base
import bob.bio.face

[docs]class LDAIR (bob.bio.face.preprocessor.FaceCrop): """This class defines a wrapper for the :py:class:`facerec2010.baseline.lda.LRLDA` class to be used as an image :py:class:`bob.bio.base.preprocessor.Preprocessor`. **Parameters:** ``REGION_ARGS`` : [] The region arguments as taken from :py:attr:`facerec2010.baseline.lda.CohortLDA_REGIONS`. ``REGION_KEYWORDS`` : {} The region keywords as taken from :py:attr:`facerec2010.baseline.lda.CohortLDA_KEYWORDS`. ``face_detector`` : :py:class:`bob.bio.face.preprocessor.FaceDetect` or str The face detector to be used to detect the detected face. Might be an instance of a :py:class:`FaceDetect` or the name of a face detector resource. """ def __init__(self, REGION_ARGS = facerec2010.baseline.lda.CohortLDA_REGIONS, REGION_KEYWORDS = facerec2010.baseline.lda.CohortLDA_KEYWORDS, face_detector = None): bob.bio.base.preprocessor.Preprocessor.__init__(self, REGION_ARGS=str(REGION_ARGS), REGION_KEYWORDS=str(REGION_KEYWORDS), face_detector=str(face_detector)) self.ldair = facerec2010.baseline.lda.LRLDA(REGION_ARGS, **REGION_KEYWORDS) self.layers = len(REGION_ARGS) self.face_detector = bob.bio.face.preprocessor.utils.load_cropper(face_detector) if self.face_detector is not None: assert isinstance(self.face_detector, bob.bio.face.preprocessor.FaceDetect) # asign ourself to be the face cropper that should be used after face detection self.face_detector.cropper = self def _numpy_image(self, image): """Converts the givne image into a numpy color image in Bob format""" np_image = image.asMatrix3D() bob_image = numpy.ndarray((np_image.shape[0], np_image.shape[2], np_image.shape[1]), dtype = numpy.uint8) # iterate over color layers for j in range(np_image.shape[0]): bob_image[j,:,:] = np_image[j].transpose()[:,:] return bob_image
[docs] def crop_face(self, image, annotations): """crop_face(image, annotations = None) -> face Executes the face cropping on the given image and returns the cropped version of it. **Parameters:** ``image`` : 3D :py:class:`numpy.ndarray` The face image to be processed. ``annotations`` : dict The eye annotations for the image. They need to be specified as ``{'reye' : (re_y, re_x), 'leye' : (le_y, le_x)}``, where right and left is in subject perspective. **Returns:** face : 3D :py:class:`numpy.ndarray` The cropped face. """ # assure that the eye positions are in the set of annotations if annotations is None or 'leye' not in annotations or 'reye' not in annotations: raise ValueError("The LDA-IR image cropping needs eye positions, but they are not given.") if isinstance(image, numpy.ndarray): if len(image.shape) != 3: raise ValueError("The LDA-IR image cropping needs color images.") image = pyvision.Image(numpy.transpose(image, (0, 2, 1)).astype(numpy.float64)) assert isinstance(image, pyvision.Image) # Warning! Left and right eye are mixed up here! # The ldair preprocess expects left_eye_x < right_eye_x tiles = self.ldair.preprocess( image, leye = pyvision.Point(annotations['reye'][1], annotations['reye'][0]), reye = pyvision.Point(annotations['leye'][1], annotations['leye'][0]) ) # LDAIR preprocessing spits out 4D structure, i.e., [Matrix] # with each element of the outer list being identical # so we just have to copy the first image assert len(tiles) == self.layers assert (tiles[0].asMatrix3D() == tiles[1].asMatrix3D()).all() # return the image in the format that Bob knows and understands return self._numpy_image(tiles[0])
[docs] def __call__(self, image, annotations): """Preprocesses the image using the LDA-IR preprocessor :py:meth:`facerec2010.baseline.lda.LRLDA.preprocess`. **Parameters:** image : :py:class:`pyvision.Image` or :py:class:`numpy.ndarray` The color image that should be preprocessed. annotations : dict The eye annotations for the image. They need to be specified as ``{'reye' : (re_y, re_x), 'leye' : (le_y, le_x)}``, where right and left is in subject perspective. **Returns:** preprocessed : 3D numpy.ndarray The preprocessed color image, in default Bob format. """ if self.face_detector is not None: if isinstance(image, pyvision.Image): # the face detector requires numpy arrays image = self._numpy_image(image) import bob.io.base import bob.io.image bob.io.base.save(image.astype(numpy.uint8), "test.png") # call face detector with the (tansformed) image return self.face_detector.crop_face(image, annotations) return self.crop_face(image, annotations)
[docs] def read_original_data(self, image_file): """read_original_data(image_file) -> image Reads the original images using functionality from pyvision. **Parameters:** image_file : str The image file to be read, can contain a gray level or a color image. **Returns:** image : :py:class:`pyvision.Image` The image read from file. """ # we use pyvision to read the images. Hence, we don't have to struggle with conversion here return pyvision.Image(str(image_file))