Source code for bart.common.Utils

#    Copyright 2015-2016 ARM Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""Utility functions for sheye"""

import trappy
import numpy as np

# pylint fails to recognize numpy members.
# pylint: disable=no-member

[docs]def listify(to_select): """Utitlity function to handle both single and list inputs """ if not isinstance(to_select, list): to_select = [to_select] return to_select
[docs]def init_ftrace(trace): """Initialize the FTrace Object :param trace: Path for the trace file or a trace object :type trace: str, :mod:`trappy.ftrace.FTrace` """ if isinstance(trace, basestring): return trappy.FTrace(trace) elif isinstance(trace, trappy.BareTrace): return trace raise ValueError("Invalid trace Object")
[docs]def select_window(series, window): """Helper Function to select a portion of pandas time series :param series: Input Time Series data :type series: :mod:`pandas.Series` :param window: A tuple indicating a time window :type window: tuple """ if not window: return series start, stop = window ix = series.index selector = ((ix >= start) & (ix <= stop)) window_series = series[selector] return window_series
[docs]def area_under_curve(series, sign=None, method="trapz", step="post"): """Return the area under the time series curve (Integral) :param series: The time series to be integrated :type series: :mod:`pandas.Series` :param sign: Clip the data for the area in positive or negative regions. Can have two values - `"+"` - `"-"` :type sign: str :param method: The method for area calculation. This can be any of the integration methods supported in `numpy` or `rect` :type param: str :param step: The step behaviour for `rect` method :type step: str *Rectangular Method* - Step: Post Consider the following time series data .. code:: 2 *----*----*----+ | | 1 | *----*----+ | 0 *----*----+ 0 1 2 3 4 5 6 7 .. code:: import pandas as pd a = [0, 0, 2, 2, 2, 1, 1] s = pd.Series(a) The area under the curve is: .. math:: \sum_{k=0}^{N-1} (x_{k+1} - {x_k}) \\times f(x_k) \\\\ (2 \\times 3) + (1 \\times 2) = 8 - Step: Pre .. code:: 2 +----*----*----* | | 1 | +----*----*----+ | 0 *----* 0 1 2 3 4 5 6 7 .. code:: import pandas as pd a = [0, 0, 2, 2, 2, 1, 1] s = pd.Series(a) The area under the curve is: .. math:: \sum_{k=1}^{N} (x_k - x_{k-1}) \\times f(x_k) \\\\ (2 \\times 3) + (1 \\times 3) = 9 """ if sign == "+": series = series.clip_lower(0) elif sign == "=": series = series.clip_upper(0) series = series.dropna() if method == "rect": if step == "post": values = series.values[:-1] elif step == "pre": values = series.values[1:] else: raise ValueError("Invalid Value for step: {}".format(step)) return float((values * np.diff(series.index)).sum()) if hasattr(np, method): np_integ_method = getattr(np, method) return np_integ_method(series.values, series.index) else: raise ValueError("Invalid method: {}".format(method))
[docs]def interval_sum(series, value=None, step="post"): """A function that returns the sum of the intervals where the value of series is equal to the expected value. Consider the following time series data: ====== ======= Time Value ====== ======= 0 0 1 0 2 1 3 1 4 1 5 1 8 0 9 1 10 0 11 1 12 1 ====== ======= .. note:: The time/index values, in general, may not be uniform. This causes difference in the the values of :func:`interval_sum` for **step-pre** and **step-post** behaviours .. code:: import pandas values = [0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1] index = [0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12] series = pandas.Series(values, index=index) The :func:`interval_sum` for the value 1 is calculated differently for **step-post** and **step-pre** behaviours as follows: - **Step-Post** .. code:: 1 *----*----*----*-------------+ *----+ *----* | | | | | 0 *----*----+ *----+ *----+ 0 1 2 3 4 5 6 7 8 9 10 11 12 .. math:: (8-2) + (10-9) + (12-11) = 6 + 1 + 1 = 8 - **Step-Pre** .. code:: 1 +----*----*----*----* +----* +----*----* | | | | | 0 *----* +--------------* +----* 0 1 2 3 4 5 6 7 8 9 10 11 12 .. math:: (5-1) + (9-8) + (12-10) = 4 + 1 + 2 = 7 .. note:: The asterisks (*) on the plots above represent the values of the time series data and these do not vary between the two step styles :param series: The time series data :type series: :mod:`pandas.Series` :param value: The value to checked for in the series. If the value is None, the truth value of the elements in the series will be used :type value: element :param step: The step behaviour as described above :: step="post" step="pre :type step: str """ index = series.index array = series.values time_splits = np.append(np.where(np.diff(array) != 0), len(array) - 1) prev = 0 time = 0 step_post = True if step == "pre": step_post = False elif step != "post": raise ValueError("Invalid value for step: {}".format(step)) for split in time_splits: first_val = series.iloc[split] check = (first_val == value) if value else first_val if check: start = prev end = split if step_post: end = split + 1 if split < len(series) - 1 else split else: start = prev - 1 if prev > 1 else prev time += index[end] - index[start] prev = split + 1 return float(time)