In this example we want to use AlgoPy to help compute the minimum of the non-convex multi-modal bivariate Himmelblau function
The idea is that by using AlgoPy to provide the gradient and hessian of the objective function, the nonlinear optimization procedures in scipy.optimize will more easily find the \(x\) and \(y\) values that minimize \(f(x, y)\). Here is the python code:
"""
Minimize the Himmelblau function.
http://en.wikipedia.org/wiki/Himmelblau%27s_function
"""
import numpy
import minhelper
def himmelblau(X):
"""
This R^2 -> R^1 function should be compatible with algopy.
http://en.wikipedia.org/wiki/Himmelblau%27s_function
This function has four local minima where the value of the function is 0.
"""
x = X[0]
y = X[1]
a = x*x + y - 11
b = x + y*y - 7
return a*a + b*b
def main():
target = [3, 2]
easy_init = [3.1, 2.1]
hard_init = [-0.27, -0.9]
minhelper.show_minimization_results(
himmelblau, target, easy_init, hard_init)
if __name__ == '__main__':
main()
Here is its output:
properties of the function at a local min:
point:
[ 3. 2.]
function value:
0.0
autodiff gradient:
[ 0. 0.]
finite differences gradient:
[ 0. 0.]
autodiff hessian:
[[ 74. 20.]
[ 20. 34.]]
finite differences hessian:
[[ 74. 20.]
[ 20. 34.]]
---------------------------------------------------------
searches beginning from the easier init point [ 3.1 2.1]
---------------------------------------------------------
properties of the function at the initial guess:
point:
[ 3.1 2.1]
function value:
0.7642
autodiff gradient:
[ 9.824 5.704]
finite differences gradient:
[ 9.824 5.704]
autodiff hessian:
[[ 81.72 20.8 ]
[ 20.8 39.32]]
finite differences hessian:
[[ 81.72 20.8 ]
[ 20.8 39.32]]
strategy: default (Nelder-Mead)
options: default
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 31
Function evaluations: 59
[ 2.99997347 2.0000045 ]
strategy: ncg
options: default
gradient: autodiff
hessian: autodiff
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 4
Function evaluations: 5
Gradient evaluations: 4
Hessian evaluations: 4
[ 3. 2.]
strategy: ncg
options: default
gradient: autodiff
hessian: finite differences
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 4
Function evaluations: 5
Gradient evaluations: 18
Hessian evaluations: 0
[ 3. 2.]
strategy: cg
options: default
gradient: autodiff
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 7
Function evaluations: 18
Gradient evaluations: 18
[ 3.00000005 1.99999991]
strategy: cg
options: default
gradient: finite differences
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 7
Function evaluations: 72
Gradient evaluations: 18
[ 3.00000004 1.99999991]
strategy: bfgs
options: default
gradient: autodiff
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 5
Function evaluations: 9
Gradient evaluations: 9
[ 2.99999993 1.99999986]
strategy: bfgs
options: default
gradient: finite differences
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 5
Function evaluations: 36
Gradient evaluations: 9
[ 2.99999993 1.99999986]
strategy: slsqp
options: default
gradient: autodiff
Optimization terminated successfully. (Exit mode 0)
Current function value: 2.68119275432e-08
Iterations: 5
Function evaluations: 9
Gradient evaluations: 5
[ 2.99997095 2.00001136]
strategy: slsqp
options: default
gradient: finite differences
Optimization terminated successfully. (Exit mode 0)
Current function value: 2.68250888103e-08
Iterations: 5
Function evaluations: 24
Gradient evaluations: 5
[ 2.99997095 2.00001136]
strategy: powell
options: default
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 5
Function evaluations: 126
[ 3. 2.]
strategy: tnc
options: default
gradient: autodiff
(array([ 2.999999, 2.000002]), 11, 1)
strategy: tnc
options: default
gradient: finite differences
(array([ 2.99999646, 2.00000762]), 14, 1)
---------------------------------------------------------
searches beginning from the more difficult init point [-0.27 -0.9 ]
---------------------------------------------------------
properties of the function at the initial guess:
point:
[-0.27 -0.9 ]
function value:
181.61189441
autodiff gradient:
[-0.146732 -0.3982 ]
finite differences gradient:
[-0.146732 -0.3982 ]
autodiff hessian:
[[-44.7252 -4.68 ]
[ -4.68 -17.36 ]]
finite differences hessian:
[[-44.7252 -4.68 ]
[ -4.68 -17.36 ]]
strategy: default (Nelder-Mead)
options: default
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 54
Function evaluations: 105
[-2.80514623 3.13132056]
strategy: ncg
options: default
gradient: autodiff
hessian: autodiff
Optimization terminated successfully.
Current function value: 181.611894
Iterations: 1
Function evaluations: 5
Gradient evaluations: 1
Hessian evaluations: 1
[-0.26999996 -0.89999989]
strategy: ncg
options: default
gradient: autodiff
hessian: finite differences
Optimization terminated successfully.
Current function value: 181.611894
Iterations: 1
Function evaluations: 5
Gradient evaluations: 3
Hessian evaluations: 0
[-0.26999996 -0.89999989]
strategy: cg
options: default
gradient: autodiff
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 10
Function evaluations: 35
Gradient evaluations: 35
[ 3.00000011 1.99999978]
strategy: cg
options: default
gradient: finite differences
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 10
Function evaluations: 140
Gradient evaluations: 35
[ 3.0000001 1.99999978]
strategy: bfgs
options: default
gradient: autodiff
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 11
Function evaluations: 29
Gradient evaluations: 29
[ 3. 1.99999999]
strategy: bfgs
options: default
gradient: finite differences
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 11
Function evaluations: 116
Gradient evaluations: 29
[ 3. 1.99999999]
strategy: slsqp
options: default
gradient: autodiff
Optimization terminated successfully. (Exit mode 0)
Current function value: 6.19262349912e-09
Iterations: 10
Function evaluations: 22
Gradient evaluations: 10
[ 2.99999684 2.00002046]
strategy: slsqp
options: default
gradient: finite differences
Optimization terminated successfully. (Exit mode 0)
Current function value: 6.18718154108e-09
Iterations: 10
Function evaluations: 52
Gradient evaluations: 10
[ 2.99999683 2.00002045]
strategy: powell
options: default
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 6
Function evaluations: 155
[ 3.58442834 -1.84812653]
strategy: tnc
options: default
gradient: autodiff
(array([ 3., 2.]), 42, 1)
strategy: tnc
options: default
gradient: finite differences
(array([ 2.99999981, 1.99999997]), 39, 1)