Data Type Checkers ================== .. py:currentmodule:: xcheck Other standard datatypes have their own checkers. BoolCheck --- Boolean Validation -------------------------------- BoolCheck checks against a number of boolean-equivalent expressions. .. class:: BoolCheck(name [, none_is_false]) The optional attribute on top of the standard attributes: .. attribute:: none_is_false [default True] If True, accepts `None` or "None" and treates as **False**. :class:`BoolCheck` accepts the following values and normalizes them as **True** * ``True``, "TRUE", "True", "true", "T", "t", "YES", "Yes", "yes", "Y", "y", "1" :class:`BoolCheck` accepts the following values and normalizes them as **False** * ``False``, "FALSE", "False", "false", "F", "f", "NO", "No", "no", "N", "n", "0" IntCheck --- Integer Validation ------------------------------- .. autoclass:: IntCheck Calling an :class:`IntCheck` instance supports the `as_string` keyword. The following example shows the many ways :class:`IntCheck` accepts data: .. code-block:: python from xcheck import IntCheck, ET value = IntCheck('value', min=2, max=12) text = '<value>5</value>' node = ET.fromstring(text) print value(9) print value('9') print value('9.0') print value(text) print value(node) All of the above lines will print `True`. DecimalCheck --- Float Validation --------------------------------- .. autoclass:: DecimalCheck DateTimeCheck --- DateTime validation ------------------------------------- .. autoclass:: DatetimeCheck