Constructor of multidimensional tensor in Tensor Train format [3]
Parameters: |
|
---|
Common interface for the construction of the approximation.
Parameters: |
|
---|
Used to get the Frobeniuos norm of the underlying data. This needs to be redefined in QTTvec in order to get the Frobeniuous norm of the real tensor.
Used to get the real subtensor of the underlying data. This needs to be redefined in QTTvec in order to get the subtensor of the real tensor.
Construct a TT representation of A using TT cross
Parameters: |
---|
Interpolates the values of the TTvec at arbitrary points, using the interpolation matrices Ms.
Parameters: | |
---|---|
Returns: | TTvec interpolation |
Return type: | TTvec |
>>> from DABISpectralToolbox import DABISpectral1D as S1D
>>> Ms = [ S1D.LinearInterpolationMatrix(X[i],XI[i]) for i in range(d) ]
>>> is_sparse = [True]*d
>>> TTapproxI = TTapprox.interpolate(Ms,eps=1e-8,is_sparse=is_sparse)
Project the TTvec onto a set of basis provided, using the Generalized Vandermonde matrices Vs and weights Ws.
Parameters: |
|
---|---|
Returns: | TTvec containting the Fourier coefficients |
Return type: | TTvec |
>>> from DABISpectralToolbox import DABISpectral1D as S1D
>>> P = S1D.Poly1D(S1D.JACOBI,(0,0))
>>> x,w = S1D.Quadrature(10,S1D.GAUSS)
>>> X = [x]*d
>>> W = [w]*d
>>> # Compute here the TTapprox at points X
>>> TTapprox = TTvec(....)
>>> # Project
>>> Vs = [ P.GradVandermonde1D(x,10,0,norm=False) ] * d
>>> is_sparse = [False]*d
>>> TTfourier = TTapprox.project(Vs,W,eps=1e-8,is_sparse=is_sparse)
TT-rounding
TT-rounding
Returns the shape of the tensor represented
Construct a TT representation of A using TT cross. This routine manage the outer loops for incremental ttcross or passes everything to ttcross if rs are specified.
Parameters: |
|
---|
Construct a TT representation of A using TT-Density matrix renormalization group
Parameters: |
|
---|
Construct a TT representation of A using TT-Density matrix renormalization group
Parameters: |
|
---|