Source code for trappy.utils

#    Copyright 2015-2016 ARM Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""Generic functions that can be used in multiple places in trappy
"""

[docs]def listify(to_select): """Utitlity function to handle both single and list inputs """ if not isinstance(to_select, list): to_select = [to_select] return to_select
[docs]def handle_duplicate_index(data, max_delta=0.000001): """Handle duplicate values in index :param data: The timeseries input :type data: :mod:`pandas.Series` :param max_delta: Maximum interval adjustment value that will be added to duplicate indices :type max_delta: float Consider the following case where a series needs to be reindexed to a new index (which can be required when different series need to be combined and compared): :: import pandas values = [0, 1, 2, 3, 4] index = [0.0, 1.0, 1.0, 6.0, 7.0] series = pandas.Series(values, index=index) new_index = [0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 7.0] series.reindex(new_index) The above code fails with: :: ValueError: cannot reindex from a duplicate axis The function :func:`handle_duplicate_axis` changes the duplicate values to :: >>> import pandas >>> from trappy.utils import handle_duplicate_index >>> values = [0, 1, 2, 3, 4] index = [0.0, 1.0, 1.0, 6.0, 7.0] series = pandas.Series(values, index=index) series = handle_duplicate_index(series) print series.index.values >>> [ 0. 1. 1.000001 6. 7. ] """ index = data.index new_index = index.values dups = index.get_duplicates() for dup in dups: # Leave one of the values intact dup_index_left = index.searchsorted(dup, side="left") dup_index_right = index.searchsorted(dup, side="right") - 1 num_dups = dup_index_right - dup_index_left + 1 # Calculate delta that needs to be added to each duplicate # index try: delta = (index[dup_index_right + 1] - dup) / num_dups except IndexError: # dup_index_right + 1 is outside of the series (i.e. the # dup is at the end of the series). delta = max_delta # Clamp the maximum delta added to max_delta if delta > max_delta: delta = max_delta # Add a delta to the others dup_index_left += 1 while dup_index_left <= dup_index_right: new_index[dup_index_left] += delta delta += delta dup_index_left += 1 return data.reindex(new_index)