Source code for trappy.ftrace

#    Copyright 2015-2016 ARM Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#


# pylint can't see any of the dynamically allocated classes of FTrace
# pylint: disable=no-member

import itertools
import os
import re
import pandas as pd

from trappy.bare_trace import BareTrace
from trappy.utils import listify

def _plot_freq_hists(allfreqs, what, axis, title):
    """Helper function for plot_freq_hists

    allfreqs is the output of a Cpu*Power().get_all_freqs() (for
    example, CpuInPower.get_all_freqs()).  what is a string: "in" or
    "out"

    """
    import trappy.plot_utils

    for ax, actor in zip(axis, allfreqs):
        this_title = "freq {} {}".format(what, actor)
        this_title = trappy.plot_utils.normalize_title(this_title, title)
        xlim = (0, allfreqs[actor].max())

        trappy.plot_utils.plot_hist(allfreqs[actor], ax, this_title, "KHz", 20,
                             "Frequency", xlim, "default")

[docs]class GenericFTrace(BareTrace): """Generic class to parse output of FTrace. This class is meant to be subclassed by FTrace (for parsing FTrace coming from trace-cmd) and SysTrace.""" thermal_classes = {} sched_classes = {} dynamic_classes = {} def __init__(self, name="", normalize_time=True, scope="all", events=[], window=(0, None), abs_window=(0, None)): super(GenericFTrace, self).__init__(name) if not hasattr(self, "needs_raw_parsing"): self.needs_raw_parsing = False self.class_definitions.update(self.dynamic_classes.items()) self.__add_events(listify(events)) if scope == "thermal": self.class_definitions.update(self.thermal_classes.items()) elif scope == "sched": self.class_definitions.update(self.sched_classes.items()) elif scope != "custom": self.class_definitions.update(self.thermal_classes.items() + self.sched_classes.items()) for attr, class_def in self.class_definitions.iteritems(): trace_class = class_def() setattr(self, attr, trace_class) self.trace_classes.append(trace_class) self.__parse_trace_file(self.trace_path, window, abs_window) if self.needs_raw_parsing and (self.trace_path_raw is not None): self.__parse_trace_file(self.trace_path_raw, window, abs_window, raw=True) self.finalize_objects() if normalize_time: self.normalize_time() @classmethod
[docs] def register_parser(cls, cobject, scope): """Register the class as an Event. This function can be used to register a class which is associated with an FTrace unique word. .. seealso:: :mod:`trappy.dynamic.register_dynamic_ftrace` :mod:`trappy.dynamic.register_ftrace_parser` """ if not hasattr(cobject, "name"): cobject.name = cobject.unique_word.split(":")[0] # Add the class to the classes dictionary if scope == "all": cls.dynamic_classes[cobject.name] = cobject else: getattr(cls, scope + "_classes")[cobject.name] = cobject
@classmethod
[docs] def unregister_parser(cls, cobject): """Unregister a parser This is the opposite of FTrace.register_parser(), it removes a class from the list of classes that will be parsed on the trace """ # TODO: scopes should not be hardcoded (nor here nor in the FTrace object) all_scopes = [cls.thermal_classes, cls.sched_classes, cls.dynamic_classes] known_events = ((n, c, sc) for sc in all_scopes for n, c in sc.items()) for name, obj, scope_classes in known_events: if cobject == obj: del scope_classes[name]
def __add_events(self, events): """Add events to the class_definitions If the events are known to trappy just add that class to the class definitions list. Otherwise, register a class to parse that event """ from trappy.dynamic import DynamicTypeFactory, default_init from trappy.base import Base # TODO: scopes should not be hardcoded (nor here nor in the FTrace object) all_scopes = [self.thermal_classes, self.sched_classes, self.dynamic_classes] known_events = {k: v for sc in all_scopes for k, v in sc.iteritems()} for event_name in events: for cls in known_events.itervalues(): if (event_name == cls.unique_word) or \ (event_name + ":" == cls.unique_word): self.class_definitions[event_name] = cls break else: kwords = { "__init__": default_init, "unique_word": event_name + ":", "name": event_name, } trace_class = DynamicTypeFactory(event_name, (Base,), kwords) self.class_definitions[event_name] = trace_class def __populate_data(self, fin, cls_for_unique_word, window, abs_window): """Append to trace data from a txt trace""" def contains_unique_word(line, unique_words=cls_for_unique_word.keys()): for unique_word in unique_words: if unique_word in line: return True return False special_fields_regexp = r"^\s*(?P<comm>.*)-(?P<pid>\d+)(?:\s+\(.*\))"\ r"?\s+\[(?P<cpu>\d+)\](?:\s+....)?\s+"\ r"(?P<timestamp>[0-9]+\.[0-9]+):" special_fields_regexp = re.compile(special_fields_regexp) start_match = re.compile(r"[A-Za-z0-9_]+=") actual_trace = itertools.dropwhile(self.trace_hasnt_started(), fin) actual_trace = itertools.takewhile(self.trace_hasnt_finished(), actual_trace) for line in itertools.ifilter(contains_unique_word, actual_trace): for unique_word, cls in cls_for_unique_word.iteritems(): if unique_word in line: trace_class = cls break else: raise ValueError("No unique in {}".format(line)) line = line[:-1] special_fields_match = special_fields_regexp.match(line) comm = special_fields_match.group('comm') pid = int(special_fields_match.group('pid')) cpu = int(special_fields_match.group('cpu')) timestamp = float(special_fields_match.group('timestamp')) if not self.basetime: self.basetime = timestamp if (timestamp < window[0] + self.basetime) or \ (timestamp < abs_window[0]): continue if (window[1] and timestamp > window[1] + self.basetime) or \ (abs_window[1] and timestamp > abs_window[1]): return try: data_start_idx = start_match.search(line).start() except AttributeError: continue data_str = line[data_start_idx:] # Remove empty arrays from the trace data_str = re.sub(r"[A-Za-z0-9_]+=\{\} ", r"", data_str) trace_class.append_data(timestamp, comm, pid, cpu, data_str)
[docs] def trace_hasnt_started(self): """Return a function that accepts a line and returns true if this line is not part of the trace. Subclasses of GenericFTrace may override this to skip the beginning of a file that is not part of the trace. The first time the returned function returns False it will be considered the beginning of the trace and this function will never be called again (because once it returns False, the trace has started). """ return lambda x: False
[docs] def trace_hasnt_finished(self): """Return a function that accepts a line and returns true if this line is part of the trace. This function is called with each line of the file *after* trace_hasnt_started() returns True so the first line it sees is part of the trace. The returned function should return True as long as the line it receives is part of the trace. As soon as this function returns False, the rest of the file will be dropped. Subclasses of GenericFTrace may override this to stop processing after the end of the trace is found to skip parsing the end of the file if it contains anything other than trace. """ return lambda x: True
def __parse_trace_file(self, trace_file, window, abs_window, raw=False): """parse the trace and create a pandas DataFrame""" # Memoize the unique words to speed up parsing the trace file cls_for_unique_word = {} for trace_name in self.class_definitions.iterkeys(): trace_class = getattr(self, trace_name) if self.needs_raw_parsing and (trace_class.parse_raw != raw): continue unique_word = trace_class.unique_word cls_for_unique_word[unique_word] = trace_class if len(cls_for_unique_word) == 0: return with open(trace_file) as fin: self.__populate_data(fin, cls_for_unique_word, window, abs_window) # TODO: Move thermal specific functionality
[docs] def get_all_freqs_data(self, map_label): """get an array of tuple of names and DataFrames suitable for the allfreqs plot""" cpu_in_freqs = self.cpu_in_power.get_all_freqs(map_label) cpu_out_freqs = self.cpu_out_power.get_all_freqs(map_label) ret = [] for label in map_label.values(): in_label = label + "_freq_in" out_label = label + "_freq_out" cpu_inout_freq_dict = {in_label: cpu_in_freqs[label], out_label: cpu_out_freqs[label]} dfr = pd.DataFrame(cpu_inout_freq_dict).fillna(method="pad") ret.append((label, dfr)) try: gpu_freq_in_data = self.devfreq_in_power.get_all_freqs() gpu_freq_out_data = self.devfreq_out_power.get_all_freqs() except KeyError: gpu_freq_in_data = gpu_freq_out_data = None if gpu_freq_in_data is not None: inout_freq_dict = {"gpu_freq_in": gpu_freq_in_data["freq"], "gpu_freq_out": gpu_freq_out_data["freq"] } dfr = pd.DataFrame(inout_freq_dict).fillna(method="pad") ret.append(("GPU", dfr)) return ret
[docs] def plot_freq_hists(self, map_label, ax): """Plot histograms for each actor input and output frequency ax is an array of axis, one for the input power and one for the output power """ in_base_idx = len(ax) / 2 try: devfreq_out_all_freqs = self.devfreq_out_power.get_all_freqs() devfreq_in_all_freqs = self.devfreq_in_power.get_all_freqs() except KeyError: devfreq_out_all_freqs = None devfreq_in_all_freqs = None out_allfreqs = (self.cpu_out_power.get_all_freqs(map_label), devfreq_out_all_freqs, ax[0:in_base_idx]) in_allfreqs = (self.cpu_in_power.get_all_freqs(map_label), devfreq_in_all_freqs, ax[in_base_idx:]) for cpu_allfreqs, devfreq_freqs, axis in (out_allfreqs, in_allfreqs): if devfreq_freqs is not None: devfreq_freqs.name = "GPU" allfreqs = pd.concat([cpu_allfreqs, devfreq_freqs], axis=1) else: allfreqs = cpu_allfreqs allfreqs.fillna(method="pad", inplace=True) _plot_freq_hists(allfreqs, "out", axis, self.name)
[docs] def plot_load(self, mapping_label, title="", width=None, height=None, ax=None): """plot the load of all the clusters, similar to how compare runs did it the mapping_label has to be a dict whose keys are the cluster numbers as found in the trace and values are the names that will appear in the legend. """ import trappy.plot_utils load_data = self.cpu_in_power.get_load_data(mapping_label) try: gpu_data = pd.DataFrame({"GPU": self.devfreq_in_power.data_frame["load"]}) load_data = pd.concat([load_data, gpu_data], axis=1) except KeyError: pass load_data = load_data.fillna(method="pad") title = trappy.plot_utils.normalize_title("Utilization", title) if not ax: ax = trappy.plot_utils.pre_plot_setup(width=width, height=height) load_data.plot(ax=ax) trappy.plot_utils.post_plot_setup(ax, title=title)
[docs] def plot_normalized_load(self, mapping_label, title="", width=None, height=None, ax=None): """plot the normalized load of all the clusters, similar to how compare runs did it the mapping_label has to be a dict whose keys are the cluster numbers as found in the trace and values are the names that will appear in the legend. """ import trappy.plot_utils load_data = self.cpu_in_power.get_normalized_load_data(mapping_label) if "load" in self.devfreq_in_power.data_frame: gpu_dfr = self.devfreq_in_power.data_frame gpu_max_freq = max(gpu_dfr["freq"]) gpu_load = gpu_dfr["load"] * gpu_dfr["freq"] / gpu_max_freq gpu_data = pd.DataFrame({"GPU": gpu_load}) load_data = pd.concat([load_data, gpu_data], axis=1) load_data = load_data.fillna(method="pad") title = trappy.plot_utils.normalize_title("Normalized Utilization", title) if not ax: ax = trappy.plot_utils.pre_plot_setup(width=width, height=height) load_data.plot(ax=ax) trappy.plot_utils.post_plot_setup(ax, title=title)
[docs] def plot_allfreqs(self, map_label, width=None, height=None, ax=None): """Do allfreqs plots similar to those of CompareRuns if ax is not none, it must be an array of the same size as map_label. Each plot will be done in each of the axis in ax """ import trappy.plot_utils all_freqs = self.get_all_freqs_data(map_label) setup_plot = False if ax is None: ax = [None] * len(all_freqs) setup_plot = True for this_ax, (label, dfr) in zip(ax, all_freqs): this_title = trappy.plot_utils.normalize_title("allfreqs " + label, self.name) if setup_plot: this_ax = trappy.plot_utils.pre_plot_setup(width=width, height=height) dfr.plot(ax=this_ax) trappy.plot_utils.post_plot_setup(this_ax, title=this_title)
[docs]class FTrace(GenericFTrace): """A wrapper class that initializes all the classes of a given run - The FTrace class can receive the following optional parameters. :param path: Path contains the path to the trace file. If no path is given, it uses the current directory by default. If path is a file, and ends in .dat, it's run through "trace-cmd report". If it doesn't end in ".dat", then it must be the output of a trace-cmd report run. If path is a directory that contains a trace.txt, that is assumed to be the output of "trace-cmd report". If path is a directory that doesn't have a trace.txt but has a trace.dat, it runs trace-cmd report on the trace.dat, saves it in trace.txt and then uses that. :param name: is a string describing the trace. :param normalize_time: is used to make all traces start from time 0 (the default). If normalize_time is False, the trace times are the same as in the trace file. :param scope: can be used to limit the parsing done on the trace. The default scope parses all the traces known to trappy. If scope is thermal, only the thermal classes are parsed. If scope is sched, only the sched classes are parsed. :param events: A list of strings containing the name of the trace events that you want to include in this FTrace object. The string must correspond to the event name (what you would pass to "trace-cmd -e", i.e. 4th field in trace.txt) :param window: a tuple indicating a time window. The first element in the tuple is the start timestamp and the second one the end timestamp. Timestamps are relative to the first trace event that's parsed. If you want to trace until the end of the trace, set the second element to None. If you want to use timestamps extracted from the trace file use "abs_window". :param abs_window: a tuple indicating an absolute time window. This parameter is similar to the "window" one but its values represent timestamps that are not normalized, (i.e. the ones you find in the trace file) :type path: str :type name: str :type normalize_time: bool :type scope: str :type events: list :type window: tuple :type abs_window: tuple This is a simple example: :: import trappy trappy.FTrace("trace_dir") """ def __init__(self, path=".", name="", normalize_time=True, scope="all", events=[], window=(0, None), abs_window=(0, None)): self.trace_path, self.trace_path_raw = self.__process_path(path) self.needs_raw_parsing = True self.__populate_metadata() super(FTrace, self).__init__(name, normalize_time, scope, events, window, abs_window) def __process_path(self, basepath): """Process the path and return the path to the trace text file""" if os.path.isfile(basepath): trace_name = os.path.splitext(basepath)[0] else: trace_name = os.path.join(basepath, "trace") trace_txt = trace_name + ".txt" trace_raw = trace_name + ".raw.txt" trace_dat = trace_name + ".dat" if os.path.isfile(trace_dat): # Both TXT and RAW traces must always be generated if not os.path.isfile(trace_txt) or \ not os.path.isfile(trace_raw): self.__run_trace_cmd_report(trace_dat) # TXT (and RAW) traces must match the most recent binary trace elif os.path.getmtime(trace_txt) < os.path.getmtime(trace_dat): self.__run_trace_cmd_report(trace_dat) if not os.path.isfile(trace_raw): trace_raw = None return trace_txt, trace_raw def __run_trace_cmd_report(self, fname): """Run "trace-cmd report fname > fname.txt" and "trace-cmd report -R fname > fname.raw.txt" The resulting traces are stored in files with extension ".txt" and ".raw.txt" respectively. If fname is "my_trace.dat", the trace is stored in "my_trace.txt" and "my_trace.raw.txt". The contents of the destination files are overwritten if they exist. """ from subprocess import check_output cmd = ["trace-cmd", "report"] if not os.path.isfile(fname): raise IOError("No such file or directory: {}".format(fname)) raw_trace_output = os.path.splitext(fname)[0] + ".raw.txt" trace_output = os.path.splitext(fname)[0] + ".txt" cmd.append(fname) with open(os.devnull) as devnull: try: out = check_output(cmd, stderr=devnull) except OSError as exc: if exc.errno == 2 and not exc.filename: raise OSError(2, "trace-cmd not found in PATH, is it installed?") else: raise # Add the -R flag to the trace-cmd # for raw parsing cmd.insert(-1, "-R") raw_out = check_output(cmd, stderr=devnull) with open(trace_output, "w") as fout: fout.write(out) with open(raw_trace_output, "w") as fout: fout.write(raw_out) def __populate_metadata(self): """Populates trace metadata""" # Meta Data as expected to be found in the parsed trace header metadata_keys = ["version", "cpus"] for key in metadata_keys: setattr(self, "_" + key, None) with open(self.trace_path) as fin: for line in fin: if not metadata_keys: return metadata_pattern = r"^\b(" + "|".join(metadata_keys) + \ r")\b\s*=\s*([0-9]+)" match = re.search(metadata_pattern, line) if match: setattr(self, "_" + match.group(1), match.group(2)) metadata_keys.remove(match.group(1)) if re.search(r"^\s+[^\[]+-\d+\s+\[\d+\]\s+\d+\.\d+:", line): # Reached a valid trace line, abort metadata population return