Spectral ND¶
-
SpectralToolbox.SpectralND.MultiIndex(d, N)[source]¶ MultiIndex(): generates the multi index ordering for the construction of multidimensional Generalized Vandermonde matrices
- Syntax:
IDX = MultiIndex(d,N)- Input:
d= (int) dimension of the simplexN= (int) the maximum value of the sum of the indeces
- OUTPUT:
IDX= (2d-array,int) array containing the ordered multi indeces
-
class
SpectralToolbox.SpectralND.PolyND(polys)[source]¶ Bases:
objectInitialization of the N-dimensional Polynomial instance
- Syntax:
p = PolyND(polys)- Input:
polys= (list,Spectral1D.Poly1D) list of polynomial instances of the classSpectral1D.Poly1D
See also
Spectral1D.Poly1D
-
GaussLobattoQuadrature(Ns, norm=True, warnings=True)[source]¶ GaussLobattoQuadrature(): computes the tensor product of the Guass Lobatto Points and weights
- Syntax:
(x,w) = GaussLobattoQuadrature(Ns,[norm=True],[warnings=True])- Input:
Ns= (list,int) n-dimensional list with the order of approximation of each polynomialnorm= (optional,boolean) whether the weights will be normalized or notwarnings= (optional,boolean) set whether to ask for confirmation when it is required to allocate more then 100Mb of memory
- Output:
x= tensor product of the collocation pointsw= tensor product of the weights
Warning
The lengths of
Nshas to be conform to the number of polynomials with which you have instantiatedPolyND
-
GaussQuadrature(Ns, norm=True, warnings=True)[source]¶ GaussQuadrature(): computes the tensor product of the Guass Points and weights
- Syntax:
(x,w) = GaussQuadrature(Ns, [norm=True],[warnings=True])- Input:
Ns= (list,int) n-dimensional list with the order of approximation of each polynomialnorm= (optional,boolean) whether the weights will be normalized or notwarnings= (optional,boolean) set whether to ask for confirmation when it is required to allocate more then 100Mb of memory
- Output:
x= tensor product of the collocation pointsw= tensor product of the weights
Warning
The lengths of
Nshas to be conform to the number of polynomials with which you have instantiatedPolyND
-
GradVandermonde(rs, Ns, ks=None, norms=None, usekron=True, output=True, warnings=True)[source]¶ GradVandermonde(): initialize the tensor product of the k-th gradient of the modal basis.
- Syntax:
V = GradVandermonde(r,N,k,[norms=None],[usekron=True],[output=True],[warnings=True])- Input:
rs= (list of 1d-array,float)n-dimensional list of set of points on which to evaluate the polynomials (by default they are not the kron product of the points. Seeusekronoption)Ns= (list,int) n-dimensional list with the maximum orders of approximation of each polynomialks= (list,int) n-dimensional list with derivative orders [default=0]norms= (default=None,list,boolean) n-dimensional list of boolean, True -> orthonormal, False -> orthogonal, None -> all orthonormalusekron= (optional,boolean) set whether to apply the kron product of the single dimensional Vandermonde matrices or to multiply column-wise. kron(rs) and usekron==False is equal to rs and usekron==Trueoutput= (optional,boolean) set whether to print out information about memory allocationwarnings= (optional,boolean) set whether to ask for confirmation when it is required to allocate more then 100Mb of memory
- OUTPUT:
V= Tensor product of the Generalized Vandermonde matrices
Warning
The lengths of
Ns,rs,ks,normshas to be conform to the number of polynomials with which you have instantiatedPolyND
-
GradVandermondePascalSimplex(rs, N, ks=None, norms=None, usekron=True, output=True, warnings=True)[source]¶ GradVandermondePascalSimplex(): initialize k-th gradient of the modal basis up to the total order N
- Syntax:
V = GradVandermonde(r,N,k,[norms=None],[output=True],[warnings=True])- Input:
rs= (list of 1d-array,float)n-dimensional list of set of points on which to evaluate the polynomials (by default they are not the kron product of the points. Seeusekronoption)N= (int) the maximum orders of the polynomial basisks= (list,int) n-dimensional list with derivative orders [default=0]norms= (default=None,list,boolean) n-dimensional list of boolean, True -> orthonormal, False -> orthogonal, None -> all orthonormalusekron= (optional,boolean) set whether to apply the kron product of the single dimensional Vandermonde matrices or to multiply column-wise. kron(rs) and usekron==False is equal to rs and usekron==Trueoutput= (optional,boolean) set whether to print out information about memory allocationwarnings= (optional,boolean) set whether to ask for confirmation when it is required to allocate more then 100Mb of memory
- OUTPUT:
V= Generalized Vandermonde matrix up to the N-th order
Warning
The lengths of
rs,ks,normshas to be conform to the number of polynomials with which you have instantiatedPolyND
-
Quadrature(Ns, quadTypes=None, norm=True, warnings=True)[source]¶ GaussQuadrature(): computes the tensor product of the Guass Points and weights
- Syntax:
(x,w) = GaussQuadrature(Ns, [quadTypes=None], [norm=True],[warnings=True])- Input:
Ns= (list,int) n-dimensional list with the order of approximation of each polynomialquadTypes= (list,``Spectral1D.AVAIL_QUADPOINTS``) n-dimensional list of quadrature point types chosen among Gauss, Gauss-Radau, Gauss-Lobatto (using the definition inSpectral1D). If None, Gauss points will be generated by defaultnorm= (optional,boolean) whether the weights will be normalized or notwarnings= (optional,boolean) set whether to ask for confirmation when it is required to allocate more then 100Mb of memory
- Output:
x= tensor product of the collocation pointsw= tensor product of the weights
Warning
The lengths of
Nshas to be conform to the number of polynomials with which you have instantiatedPolyND
-
ch= <logging.StreamHandler object>¶
-
formatter= <logging.Formatter object>¶
-
logger= <logging.Logger object>¶