
SimPy 2.1 Cheatsheet (non-OO API)

Import statements
from SimPy.Simulation import * Use SimPy simulation library
from SimPy.SimulationTrace import * Use SimPy simulation library with tracing
from SimPy.SimulationStep import * Use SimPy simulation library with event-by-event execution
from SimPy.SimulationRT import * Use SimPy simulation library with real-time synchronization
from SimPy.SimulationGUIDebug import * Use SimPy simulation library with event-by-event GUI debugging

initialize() Set the simulation clock to zero and initialize the run

simulate(until=endtime) Start the simulation run; end it no later than endtime (NB: has additional
parameters for SimulationStep or SimulationRT)

stopSimulation() Terminate the simulation immediately
activate(p,p.PEM(args),[{delay=0|at=now()},
prior=False])

Activate entity p ; delay =activation delay; at =activation time; if
prior==True, schedule p ahead of concurrently activated entities

reactivate(p,[{delay=0|at=now()}, prior=False]) Reactivate entity p ; delay =activation delay; at =activation time; if
pr ior==True, schedule p ahead of concurrently activated entities

p.start(p.PEM(args),[{delay=0|at=now()}, prior=False]) Activate entity p ; delay =activation delay; at =activation time; if
prior ==True, schedule p ahead of concurrently activated entities. If the
PEM is called ACTIONS and has no parameters, a shortcut form
p.start([{delay=0|at=now()}, prior=False]) can be used.

Yield statements
yield hold,self,t Suspend self 's PEM for a time delay of length t
yield passivate,self Suspend self 's PEM until reactivated
yield waituntil,self,<condition> Suspend self 's PEM until the <condition> becomes True

(<condition> refers to name of a function that takes no parameters and
returns a boolean indicating whether the state or condition has occurred)

yield waitevent,self,<events> Suspend self 's PEM until some event in <events> occurs
yield queueevent,self,<events> Suspend self 's PEM and insert it at the end of the queue of events

awaiting the occurrence of some event in <events>
yield request,self,rR[,P] Request a unit of rR with priority P
yield release,self,rR Release a unit of rR
yield put,self,rL,q[,P] Offer an amount q to Level rL with priority P
yield get,self,rL,q[,P] Request an amount q from Level rL with priority P
yield put,self,rS,alist[,P] Offer the list alist of items to Store rS with priority P
yield get,self,rS,which[,P] If which is integer, request the first which items in Store rS with priority

P. If which is a filter-function name, request the items selected by
which

yield (request,self,rR[,P]),(hold,self,t) Request a unit of rR with priority P , but renege if time t passes before a
unit is acquired

yield (request,self,rR[,P]), (waitevent,self,<events>) Request a unit of rR with priority P , but renege if any event in <events>
occurs before a resource unit is acquired

self.acquired(rR) (Obligatory after compound yield request.) Return True if resource
unit requested was acquired, False if self reneged

yield (put,self,rL,q[,P]), (hold,self,t) Offer an amount q to Level rL with priority P , but renege if time t
passes before there is room for q to be accepted

Yield statements with reneging clauses (compound yield)

Basic program control and activate statements

Cheatsheet for SimPy version 2.1 (non-OO API)

Page 1 April 2010

SimPy 2.1 Cheatsheet (non-OO API)

yield (put,self,rL,q[,P]), (waitevent,self,<events>) Offer an amount q to Level rL with priority P , but renege if any event in
<events> occurs before there is room for q to be accepted

yield (put,self,rS,alist[,P]),(hold,self,t) Offer the list alist of items to Store rS with priority P, but renege if time
t passes before there is space for them

yield (put,self,rS,alist[,P]),(waitevent,self,<events>) Offer the list alist of items to Store rS with priority P, but renege if any
event in <events> occurs before there is space for them

self.stored(rB) (Obligatory after compound yield put.) Return True if amount or items
were stored in rB, False if self reneged

yield (get,self,rL,q[,P]),(hold,self,t) Request an amount q from Level rL with priority P , but renege if time t
passes before amount q is acquired

yield (get,self,rL,q[,P]),(waitevent,self,<events>) Request an amount q from Level rL with priority P, but renege if any
event in <events> occurs before amount q is acquired

yield (get,self,rS,which[,P]),(hold,self,t) If which is integer, request the first which items in Store rS with priority
P . If which is a filter-function name, request the items selected by
which , but renege if time t passes before they are acquired

yield (get,self,rS,which[,P]), (waitevent,self,<events>) If which is integer, request the first which items in Store rS with priority
P. If which is a filter-function name, request the items selected by
which , but renege if any event in <events> occurs before they are
acquired

self.acquired(rB) (Obligatory after compound yield get.) Returns True if amount or items
were acquired from rB, False if self reneged

Interrupt statements
self.cancel(p) Delete all of process object p 's scheduled future actions
self.interrupt(pVictim) Interrupt pVictim if it is active (pVictim cannot interrupt itself)
self.interrupted() Return True if self 's state is "interrupted"
self.interruptCause Return the p that interrupted self
self.interruptLeft Return the time to complete pVictim 's interrupted yield hold
self.interruptReset Reset self 's state to “not interrupted”

SE = SimEvent(name='a_SimEvent') Create the object sE of class SimEvent with the indicated property and
the methods listed immediately below

sE.occurred Return a boolean indicating whether sE has occurred
sE.waits Return the list of p 's waiting for sE
sE.queues Return the queue of p 's waiting for sE
sE.signal(None|<param>) Cause sE to occur, and provide an optional "payload" <param> of any

Python type
sE.signalparam Return the payload <param> provided when sE last occurred
p.eventsFired Return the list of events that were fired when p was last reactivated

rR = Resource(name='a_resource', unitName='a_unit',
capacity=1, monitored={False|True},
monitorType={Monitor|Tally},
qType={FIFO|PriorityQ}, preemptable={False|True})

Create the object rR of class Resource with the indicated properties and
the methods/properties listed immediately below where qType is rR 's
waitQ discipline and the recorder objects exist only when
monitored==True

rR.n Return the number of rR 's units that are free
rR.waitQ Return the queue of p 's waiting for one of rR 's units
rR.activeQ Return the queue of p 's currently holding one of rR 's units
rR.waitMon The recorder object observing rR.waitQ
rR.actMon The recorder object observing rR.actQ

SimEvent statements and attributes

Resource statements and attributes

Page 2 April 2010

SimPy 2.1 Cheatsheet (non-OO API)

rL = Level(name='a_level', unitName='a_unit',
capacity='unbounded', monitored={False|True},
monitorType={Monitor|Tally}, initialBuffered={0|q},
putQType={FIFO|PriorityQ},
getQType={FIFO|PriorityQ})

Create the object rL of class Level with the indicated properties and the
methods/properites listed immediately below where 'unbounded' is
interpreted as sysmaxint, initialBuffered is the initial amount of
material in rL , and the recorder objects exist only when
monitored==True

rL.amount Return the amount of material in rL
rL.putQ Return the queue of p 's waiting to add amounts to rL
rL.getQ Return the queue of p 's waiting to get amounts from rL
rL.putQMon The recorder object observing rL.putQ
rL.getQMon The recorder object observing rL.getQ
rL.bufferMon The recorder object observing rL.amount

rS = Store(name='a_store', unitName='a_unit',
capacity='unbounded', monitored={False|True},
monitorType={Monitor|Tally},
initialBuffered={None|<alist>},
putQType={FIFO|PriorityQ},
getQType={FIFO|PriorityQ})

Create the object rS of class Store with the indicated properties and the
methods/properties listed immediately below where 'unbounded' is
interpreted as sysmaxint,initialBuffered is the initial (FIFO) queue of
items in rS , and the recorder objects exist only when
monitored==True

rS.theBuffer Return the queue of items in rS
rS.nrBuffered Return the number of items in rS.theBuffer
rS.putQ Return the queue of p 's waiting to add items to rS
rS.getQ Return the queue of p 's waiting to get items from rS
rS.putQMon The recorder object observing rS.putQ
rS.getQMon The recorder object observing rS.getQ
rS.bufferMon The recorder object observing rS.nrBuffered

rec = Monitor(name='a_Monitor', ylab='y', tlab='t') Create the recorder object rec of class Monitor with the indicated
properties and the methods listed immediately below

rec = Tally(name='a_Tally', ylab='y', tlab='t') Create the recorder object rec of class Tally with the indicated properties
and the methods listed immediately below

rec.observe(y,{now()|t}) Record the value of y and the corresponding time, now() or t
rec.reset({now()|t}) Reset rec and initialize its starting time to now() or t
rec.count() Return rec 's current number of observations
rec.total() Return the sum of rec 's y -values
rec.mean() Return the sample average of rec 's y -values
rec.var() Return the sample variance of rec 's y -values
rec.timeAverage([now()|t]) Return the time-duration-weighted average of rec 's y -values
rec.__str__() Return a string briefly describing rec 's current state
recMor[i] Return recMor 's i -th observation as a sublist, [t i ,y i] (here and below,

recMor is a recorder object of class Monitor)
recMor.yseries() Return recMor 's list of observed y -values, [y i]
recMor.tseries() Return recMor 's list of observed t -values, [t i]
recMor.histogram(low={0.0|mLo}, high={100.0|mHi},
nbins={10|mBi})

Return a histogram of recMor 's observations, using the indicated
parameters

recTay.setHistogram(name=' ', low={0.0|tLo},
high={100.0|tHi}, nbins={10|tBi})

Create a histogram object to receive recTay 's updated counts (here and
below, recTay is a recorder object of class Tally)

recTay.getHistogram() Return the histogram of recTay 's observations

Level statements and attributes

Store statements and attributes

Monitor and Tally statements and attributes

Page 3 April 2010

SimPy 2.1 Cheatsheet (non-OO API)

trace.tchange({start=ts,}{end=te,}
{toTrace=clist,}{outfile=fobj})

Change one or more trace parameters: start begins tracing at time ts; end
stops tracing at time te ; toTrace limits the tracing to the yield commands
given in the list of strings clist (default is
["hold","activate","cancel","reactivate","passivate","request",
"release","interrupt","terminated","waitevent","queueevent",
 "signal","waituntil","put","get"]); outfile directs trace output to open,
write-enabled file object fobj .

trace.treset() Resets tracing parameters to default
trace.tstart() Restarts tracing
trace.tstop() Stops tracing
trace.ttext(message) Output string message just before next yield command trace output

register(obj[,hook,name]) Registers an object to create windows in GUI. obj: any object or
SimPy.Process subclass. hook: a function that returns a string to print
user-defined text in window. name: a string to be used as the window
title

SimPy identifiers (may not be overwritten)
FIFO, FatalSimerror, FireEvent, Histogram, JobEvt, JobEvtMulti, JobTO, Lister, Monitor, PriorityQ, Process, Queue,
Resource, SimEvent, Simerror, Tally, trace,Trace, activate, allEventNotices, allEventTimes, askCancel, heapq, condQ,
hold, holdfunc, initialize, now, passivate, passivatefunc, paused, queueevent, queueevfunc, reactivate, release,
releasefunc, request, requestfunc, rtnow, rtstart, scheduler, simulate, simulateStep, startStepping, stopSimulation,
stopStepping, sys, time, trace, types, waitevent, waitevfunc, waituntil, waituntilfunc, wallclock

SimulationTrace statements

SimulationGUIDEbug statements

Page 4 April 2010

