Source code for qinfer.score

#!/usr/bin/python
# -*- coding: utf-8 -*-
##
# score.py: Provides mixins which compute the score numerically with a 
#   central difference.
##
# © 2012 Chris Ferrie (csferrie@gmail.com) and
#        Christopher E. Granade (cgranade@gmail.com)
#     
# This file is a part of the Qinfer project.
# Licensed under the AGPL version 3.
##
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
##

## FEATURES ###################################################################

from __future__ import absolute_import
from __future__ import division

## IMPORTS ####################################################################

from builtins import range

import numpy as np
    
## CLASSES ####################################################################

[docs]class ScoreMixin(object): r""" A mixin which includes a method ``score`` that numerically estimates the score of the likelihood function. Any class which mixes in this class should be equipped with a property ``n_modelparams`` and a method ``likelihood`` to satisfy dependency. """ _h = 1e-10 @property def h(self): r""" Returns the step size to be used in numerical differentiation with respect to the model parameters. The step size is given as a vector with length ``n_modelparams`` so that each model parameter can be weighted independently. """ if np.size(self._h) > 1: assert np.size(self._h) == self.n_modelparams return self._h else: return self._h * np.ones(self.n_modelparams)
[docs] def score(self, outcomes, modelparams, expparams, return_L=False): r""" Returns the numerically computed score of the likelihood function, defined as: .. math:: q(d, \vec{x}; \vec{e}) = \vec{\nabla}_{\vec{x}} \log \Pr(d | \vec{x}; \vec{e}). Calls are represented as a four-index tensor ``score[idx_modelparam, idx_outcome, idx_model, idx_experiment]``. The left-most index may be suppressed for single-parameter models. The numerical gradient is computed using the central difference method, with step size given by the property `~ScoreMixin.h`. If return_L is True, both `q` and the likelihood `L` are returned as `q, L`. """ if len(modelparams.shape) == 1: modelparams = modelparams[:, np.newaxis] # compute likelihood at central point L0 = self.likelihood(outcomes, modelparams, expparams) # allocate space for the score q = np.empty([self.n_modelparams, outcomes.shape[0], modelparams.shape[0], expparams.shape[0]]) h_perturb = np.empty(modelparams.shape) # just loop over the model parameter as there usually won't be so many # of them that vectorizing would be worth the effort. for mp_idx in range(self.n_modelparams): h_perturb[:] = np.zeros(modelparams.shape) h_perturb[:, mp_idx] = self.h[mp_idx] # use the chain rule since taking the numerical derivative of a # logarithm is unstable q[mp_idx, :] = ( self.likelihood(outcomes, modelparams + h_perturb, expparams) - self.likelihood(outcomes, modelparams - h_perturb, expparams) ) / (2 * self.h[mp_idx] * L0) if return_L: return q, L0 else: return q