Source code for pyqt_fit.utils

"""
:Author: Pierre Barbier de Reuille <pierre.barbierdereuille@gmail.com>

Module contained a variety of small useful functions.
"""

from __future__ import division, print_function, absolute_import
from collections import OrderedDict
from keyword import iskeyword as _iskeyword
from operator import itemgetter as _itemgetter
import sys
from .compat import text_type
import numpy as np
import inspect

# Find the largest float available for this numpy
if hasattr(np, 'float128'):
    large_float = np.float128
elif hasattr(np, 'float96'):
    large_float = np.float96
else:
    large_float = np.float64

def finite(val):
    return val is not None and np.isfinite(val)

def make_ufunc(nin = None, nout=1):
    """
    Decorator used to create a ufunc using `np.frompyfunc`. Note that the 
    returns array will always be of dtype 'object'. You should use the `out` if 
    you know the wanted type for the output.

    :param int nin: Number of input. Default is found by using
        ``inspect.getargspec``
    :param int nout: Number of output. Default is 1.
    """
    def f(fct):
        if nin is None:
            Nin = len(inspect.getargspec(fct).args)
        else:
            Nin = nin
        return np.frompyfunc(fct, Nin, nout)
    return f

def numpy_trans(fct):
    """
    Decorator to create a function taking a single array-like argument and 
    return a numpy array of same shape.

    The function is called as:

        fct(z, out=out)

    This decorator garanties that z and out are ndarray of same shape and out is 
    at least a float.
    """
    def f(z, out=None):
        z = np.asanyarray(z)
        if out is None:
            out = np.empty(z.shape, dtype=type(z.dtype.type() + 0.))
            arg_out = out
        else:
            arg_out = out.reshape(z.shape)
        fct(z, out=arg_out)
        return out
    return f

def numpy_trans_idx(fct):
    """
    Decorator to create a function taking a single array-like argument and 
    return a numpy array of same shape. In addition, if the input as no 
    dimension, the function will still receive a 1D array, allowing for 
    indexing.

    The function is called as:

        fct(z, out=out)

    This decorator garanties that z and out are at least 1D ndarray of same 
    shape and out is at least a float.

    It also ensure the output is the shape of the initial input (even if it has 
    no dimension)
    """
    def f(z, out=None):
        z = np.asanyarray(z)
        real_shape = z.shape
        if len(real_shape) == 0:
            z = z.reshape(1)
        if out is None:
            out = np.empty(z.shape, dtype=type(z.dtype.type() + 0.))
        else:
            out.shape = z.shape
        out = fct(z, out=out)
        out.shape = real_shape
        return out
    return f

def numpy_method_idx(fct):
    """
    Decorator to create a function taking a single array-like argument and 
    return a numpy array of same shape. In addition, if the input as no 
    dimension, the function will still receive a 1D array, allowing for 
    indexing.

    The function is called as:

        fct(self, z, out=out)

    This decorator garanties that z and out are at least 1D ndarray of same 
    shape and out is at least a float.

    It also ensure the output is the shape of the initial input (even if it has 
    no dimension)
    """
    def f(self, z, out=None):
        z = np.asanyarray(z)
        real_shape = z.shape
        if len(real_shape) == 0:
            z = z.reshape(1)
        if out is None:
            out = np.empty(z.shape, dtype=type(z.dtype.type() + 0.))
        else:
            out.shape = z.shape
        out = fct(self, z, out=out)
        out.shape = real_shape
        return out
    return f

[docs]def namedtuple(typename, field_names, verbose=False, rename=False): """Returns a new subclass of tuple with named fields. >>> Point = namedtuple('Point', 'x y') >>> Point.__doc__ # docstring for the new class 'Point(x, y)' >>> p = Point(11, y=22) # instantiate with positional args or keywords >>> p[0] + p[1] # indexable like a plain tuple 33 >>> x, y = p # unpack like a regular tuple >>> x, y (11, 22) >>> p.x + p.y # fields also accessable by name 33 >>> d = p._asdict() # convert to a dictionary >>> d['x'] 11 >>> Point(**d) # convert from a dictionary Point(x=11, y=22) >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields Point(x=100, y=22) """ # Parse and validate the field names. Validation serves two purposes, # generating informative error messages and preventing template injection attacks. if isinstance(field_names, text_type): # names separated by whitespace and/or commas field_names = field_names.replace(',', ' ').split() field_names = tuple(map(str, field_names)) forbidden_fields = {'__init__', '__slots__', '__new__', '__repr__', '__getnewargs__'} if rename: names = list(field_names) seen = set() for i, name in enumerate(names): need_suffix = (not all(c.isalnum() or c == '_' for c in name) or _iskeyword(name) or not name or name[0].isdigit() or name.startswith('_') or name in seen) if need_suffix: names[i] = '_%d' % i seen.add(name) field_names = tuple(names) for name in (typename,) + field_names: if not all(c.isalnum() or c == '_' for c in name): raise ValueError('Type names and field names can only contain alphanumeric characters ' 'and underscores: %r' % name) if _iskeyword(name): raise ValueError('Type names and field names cannot be a keyword: %r' % name) if name[0].isdigit(): raise ValueError('Type names and field names cannot start with a number: %r' % name) seen_names = set() for name in field_names: if name.startswith('__'): if name in forbidden_fields: raise ValueError('Field names cannot be on of %s' % ', '.join(forbidden_fields)) elif name.startswith('_') and not rename: raise ValueError('Field names cannot start with an underscore: %r' % name) if name in seen_names: raise ValueError('Encountered duplicate field name: %r' % name) seen_names.add(name) # Create and fill-in the class template numfields = len(field_names) argtxt = repr(field_names).replace("'", "")[1:-1] # tuple repr without parens or quotes reprtxt = ', '.join('%s=%%r' % name for name in field_names) template = '''class %(typename)s(tuple): '%(typename)s(%(argtxt)s)' \n __slots__ = () \n _fields = %(field_names)r \n def __new__(_cls, %(argtxt)s): 'Create new instance of %(typename)s(%(argtxt)s)' return _tuple.__new__(_cls, (%(argtxt)s)) \n @classmethod def _make(cls, iterable, new=tuple.__new__, len=len): 'Make a new %(typename)s object from a sequence or iterable' result = new(cls, iterable) if len(result) != %(numfields)d: raise TypeError('Expected %(numfields)d arguments, got %%d' %% len(result)) return result \n def __repr__(self): 'Return a nicely formatted representation string' return '%(typename)s(%(reprtxt)s)' %% self \n def _asdict(self): 'Return a new OrderedDict which maps field names to their values' return OrderedDict(zip(self._fields, self)) \n def _replace(_self, **kwds): 'Return a new %(typename)s object replacing specified fields with new values' result = _self._make(map(kwds.pop, %(field_names)r, _self)) if kwds: raise ValueError('Got unexpected field names: %%r' %% kwds.keys()) return result \n def __getnewargs__(self): 'Return self as a plain tuple. Used by copy and pickle.' return tuple(self) \n\n''' % dict(numfields=numfields, field_names=field_names, typename=typename, argtxt=argtxt, reprtxt=reprtxt) for i, name in enumerate(field_names): template += " %s = _property(_itemgetter(%d), " \ "doc='Alias for field number %d')\n" % (name, i, i) if verbose: print(template) # Execute the template string in a temporary namespace and # support tracing utilities by setting a value for frame.f_globals['__name__'] namespace = dict(_itemgetter=_itemgetter, __name__='namedtuple_%s' % typename, OrderedDict=OrderedDict, _property=property, _tuple=tuple) try: exec(template, namespace) except SyntaxError as e: raise SyntaxError(e.message + ':\n' + template) result = namespace[typename] # For pickling to work, the __module__ variable needs to be set to the frame # where the named tuple is created. Bypass this step in enviroments where # sys._getframe is not defined (Jython for example) or sys._getframe is not # defined for arguments greater than 0 (IronPython). try: result.__module__ = sys._getframe(1).f_globals.get('__name__', '__main__') except (AttributeError, ValueError): pass return result #
from scipy import sqrt from numpy import finfo, asarray, asfarray, zeros _epsilon = sqrt(finfo(float).eps)
[docs]def approx_jacobian(x, func, epsilon, *args): """ Approximate the Jacobian matrix of callable function func :param ndarray x: The state vector at which the Jacobian matrix is desired :param callable func: A vector-valued function of the form f(x,*args) :param ndarray epsilon: The peturbation used to determine the partial derivatives :param tuple args: Additional arguments passed to func :returns: An array of dimensions (lenf, lenx) where lenf is the length of the outputs of func, and lenx is the number of .. note:: The approximation is done using forward differences """ x0 = asarray(x) x0 = asfarray(x0, dtype=x0.dtype) epsilon = x0.dtype.type(epsilon) f0 = func(*((x0,) + args)) jac = zeros([len(x0), len(f0)], dtype=x0.dtype) dx = zeros(len(x0), dtype=x0.dtype) for i in range(len(x0)): dx[i] = epsilon jac[i] = (func(*((x0 + dx,) + args)) - f0) / epsilon dx[i] = 0.0 return jac.transpose()