Source code for pyqt_fit.kernels

r"""
:Author: Pierre Barbier de Reuille <pierre.barbierdereuille@gmail.com>

Module providing a set of kernels for use with either the :py:mod:`pyqt_fit.kde` or the :py:mod:`kernel_smoothing` 
module.

Kernels should be created following this template:

"""
from __future__ import division, absolute_import, print_function
import numpy as np
from scipy.special import erf
from scipy import fftpack, integrate
from .utils import make_ufunc
from . import _kernels_py

from .cyth import HAS_CYTHON

kernels_imp = None


def usePython():
    """
    Force the use of the Python implementation of the kernels
    """
    global kernels_imp
    from .import _kernels_py
    kernels_imp = _kernels_py


def useCython():
    """
    Force the use of the Cython implementation of the kernels, if available
    """
    global kernels_imp
    if HAS_CYTHON:
        from . import _kernels
        kernels_imp = _kernels


if HAS_CYTHON:
    useCython()
else:
    usePython()
    import sys
    print("Warning, cannot import Cython kernel functions, "
          "pure python functions will be used instead", file=sys.stderr)

S2PI = np.sqrt(2 * np.pi)


S2 = np.sqrt(2)

[docs]class Kernel1D(object): r""" A 1D kernel :math:`K(z)` is a function with the following properties: .. math:: \begin{array}{rcl} \int_\mathbb{R} K(z) &=& 1 \\ \int_\mathbb{R} zK(z)dz &=& 0 \\ \int_\mathbb{R} z^2K(z) dz &<& \infty \quad (\approx 1) \end{array} Which translates into the function should have: - a sum of 1 (i.e. a valid density of probability); - an average of 0 (i.e. centered); - a finite variance. It is even recommanded that the variance is close to 1 to give a uniform meaning to the bandwidth. .. py:attribute:: cut :type: float Cutting point after which there is a negligeable part of the probability. More formally, if :math:`c` is the cutting point: .. math:: \int_{-c}^c p(x) dx \approx 1 .. py:attribute:: lower :type: float Lower bound of the support of the PDF. Formally, if :math:`l` is the lower bound: .. math:: \int_{-\infty}^l p(x)dx = 0 .. py:attribute:: upper :type: float Upper bound of the support of the PDF. Formally, if :math:`u` is the upper bound: .. math:: \int_u^\infty p(x)dx = 0 """ cut = 3. lower = -np.inf upper = np.inf
[docs] def pdf(self, z, out=None): r""" Returns the density of the kernel on the points `z`. This is the funtion :math:`K(z)` itself. :param ndarray z: Array of points to evaluate the function on. The method should accept any shape of array. :param ndarray out: If provided, it will be of the same shape as `z` and the result should be stored in it. Ideally, it should be used for as many intermediate computation as possible. """ raise NotImplementedError()
def __call__(self, z, out=None): """ Alias for :py:meth:`Kernel1D.pdf` """ return self.pdf(z, out=out)
[docs] def cdf(self, z, out=None): r""" Returns the cumulative density function on the points `z`, i.e.: .. math:: K_0(z) = \int_{-\infty}^z K(t) dt """ z = np.asfarray(z) try: comp_pdf = self.__comp_pdf except AttributeError: def pdf(x): return self.pdf(np.atleast_1d(x)) lower = self.lower upper = self.upper @make_ufunc() def comp_pdf(x): if x < lower: return 0 if x > upper: x = upper return integrate.quad(pdf, lower, x)[0] self.__comp_cdf = comp_pdf if out is None: out = np.empty(z.shape, dtype=float) return comp_pdf(z, out=out)
[docs] def pm1(self, z, out=None): r""" Returns the first moment of the density function, i.e.: .. math:: K_1(z) = \int_{-\infty}^z z K(t) dt """ z = np.asfarray(z) try: comp_pm1 = self.__comp_pm1 except AttributeError: lower = self.lower upper = self.upper def pm1(x): return x * self.pdf(np.atleast_1d(x)) @make_ufunc() def comp_pm1(x): if x <= lower: return 0 if x > upper: x = upper return integrate.quad(pm1, lower, x)[0] self.__comp_pm1 = comp_pm1 if out is None: out = np.empty(z.shape, dtype=float) return comp_pm1(z, out=out)
[docs] def pm2(self, z, out=None): r""" Returns the second moment of the density function, i.e.: .. math:: K_2(z) = \int_{-\infty}^z z^2 K(t) dt """ z = np.asfarray(z) try: comp_pm2 = self.__comp_pm2 except AttributeError: lower = self.lower upper = self.upper def pm2(x): return x * x * self.pdf(np.atleast_1d(x)) @make_ufunc() def comp_pm2(x): if x <= lower: return 0 if x > upper: x = upper return integrate.quad(pm2, lower, x)[0] self.__comp_pm2 = comp_pm2 if out is None: out = np.empty(z.shape, dtype=float) return comp_pm2(z, out=out)
[docs] def fft(self, z, out=None): """ FFT of the kernel on the points of ``z``. The points will always be provided as a grid with :math:`2^n` points, representing the whole frequency range to be explored. For convenience, the second half of the points will be provided as negative values. """ z = np.asfarray(z) t_star = 2*np.pi/(z[1]-z[0])**2 / len(z) dz = t_star * (z[1] - z[0]) return fftpack.fft(self(z * t_star) * dz).real
[docs] def dct(self, z, out=None): r""" DCT of the kernel on the points of ``z``. The points will always be provided as a grid with :math:`2^n` points, representing the whole frequency range to be explored. """ z = np.asfarray(z) a1 = z[1] - z[0] gp = (z / a1 + 0.5) * np.pi / (len(z) * a1) return fftpack.dct(self(gp) * (gp[1] - gp[0])).real
[docs]class normal_kernel1d(Kernel1D): """ 1D normal density kernel with extra integrals for 1D bounded kernel estimation. """
[docs] def pdf(self, z, out=None): r""" Return the probability density of the function. The formula used is: .. math:: \phi(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} :param ndarray xs: Array of any shape :returns: an array of shape identical to ``xs`` """ return kernels_imp.norm1d_pdf(z, out)
def _pdf(self, z, out=None): """ Full-python implementation of :py:func:`normal_kernel1d.pdf` """ z = np.asarray(z) if out is None: out = np.empty(z.shape, dtype=z.dtype) np.multiply(z, z, out) out *= -0.5 np.exp(out, out) out /= S2PI return out __call__ = pdf
[docs] def fft(self, z, out=None): """ Returns the FFT of the normal distribution """ z = np.asfarray(z) out = np.multiply(z, z, out) out *= -0.5 np.exp(out, out) return out
[docs] def dct(self, z, out=None): """ Returns the DCT of the normal distribution """ z = np.asfarray(z) out = np.multiply(z, z, out) out *= -0.5 np.exp(out, out) return out
[docs] def cdf(self, z, out=None): r""" Cumulative density of probability. The formula used is: .. math:: \text{cdf}(z) \triangleq \int_{-\infty}^z \phi(z) dz = \frac{1}{2}\text{erf}\left(\frac{z}{\sqrt{2}}\right) + \frac{1}{2} """ return kernels_imp.norm1d_cdf(z, out)
def _cdf(self, z, out=None): """ Full-python implementation of :py:func:`normal_kernel1d.cdf` """ z = np.asarray(z) if out is None: out = np.empty(z.shape, dtype=z.dtype) np.divide(z, S2, out) erf(out, out) out *= 0.5 out += 0.5 return out
[docs] def pm1(self, z, out=None): r""" Partial moment of order 1: .. math:: \text{pm1}(z) \triangleq \int_{-\infty}^z z\phi(z) dz = -\frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}} """ return kernels_imp.norm1d_pm1(z, out)
def _pm1(self, z, out=None): """ Full-python implementation of :py:func:`normal_kernel1d.pm1` """ z = np.asarray(z) if out is None: out = np.empty(z.shape, dtype=z.dtype) np.multiply(z, z, out) out *= -0.5 np.exp(out, out) out /= -S2PI return out
[docs] def pm2(self, z, out=None): r""" Partial moment of order 2: .. math:: \text{pm2}(z) \triangleq \int_{-\infty}^z z^2\phi(z) dz = \frac{1}{2}\text{erf}\left(\frac{z}{2}\right) - \frac{z}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} + \frac{1}{2} """ return kernels_imp.norm1d_pm2(z, out)
def _pm2(self, z, out=None): """ Full-python implementation of :py:func:`normal_kernel1d.pm2` """ z = np.asarray(z, dtype=float) if out is None: out = np.empty(z.shape) np.divide(z, S2, out) erf(out, out) out /= 2 if z.shape: zz = np.isfinite(z) sz = z[zz] out[zz] -= sz * np.exp(-0.5 * sz * sz) / S2PI elif np.isfinite(z): out -= z * np.exp(-0.5 * z * z) / S2PI out += 0.5 return out
[docs]class normal_kernel(object): """ Returns a function-object for the PDF of a Normal kernel of variance identity and average 0 in dimension ``dim``. """ def __new__(klass, dim): """ The __new__ method will automatically select :py:class:`normal_kernel1d` if dim is 1. """ if dim == 1: return normal_kernel1d() return object.__new__(klass, dim) def __init__(self, dim): self.factor = 1 / np.sqrt(2 * np.pi) ** dim
[docs] def pdf(self, xs): """ Return the probability density of the function. :param ndarray xs: Array of shape (D,N) where D is the dimension of the kernel and N the number of points. :returns: an array of shape (N,) with the density on each point of ``xs`` """ xs = np.atleast_2d(xs) return self.factor * np.exp(-0.5 * np.sum(xs * xs, axis=0))
__call__ = pdf
[docs]class tricube(Kernel1D): r""" Return the kernel corresponding to a tri-cube distribution, whose expression is. The tri-cube function is given by: .. math:: f_r(x) = \left\{\begin{array}{ll} \left(1-|x|^3\right)^3 & \text{, if } x \in [-1;1]\\ 0 & \text{, otherwise} \end{array}\right. As :math:`f_r` is not a probability and is not of variance 1, we use a normalized function: .. math:: f(x) = a b f_r(ax) a = \sqrt{\frac{35}{243}} b = \frac{70}{81} """ def pdf(self, z, out=None): return kernels_imp.tricube_pdf(z, out) __call__ = pdf upper = 1. / _kernels_py.tricube_width lower = -upper cut = upper
[docs] def cdf(self, z, out=None): r""" CDF of the distribution: .. math:: \text{cdf}(x) = \left\{\begin{array}{ll} \frac{1}{162} {\left(60 (ax)^{7} - 7 {\left(2 (ax)^{10} + 15 (ax)^{4}\right)} \mathrm{sgn}\left(ax\right) + 140 ax + 81\right)} & \text{, if}x\in[-1/a;1/a]\\ 0 & \text{, if} x < -1/a \\ 1 & \text{, if} x > 1/a \end{array}\right. """ return kernels_imp.tricube_cdf(z, out)
[docs] def pm1(self, z, out=None): r""" Partial moment of order 1: .. math:: \text{pm1}(x) = \left\{\begin{array}{ll} \frac{7}{3564a} {\left(165 (ax)^{8} - 8 {\left(5 (ax)^{11} + 33 (ax)^{5}\right)} \mathrm{sgn}\left(ax\right) + 220 (ax)^{2} - 81\right)} & \text{, if} x\in [-1/a;1/a]\\ 0 & \text{, otherwise} \end{array}\right. """ return kernels_imp.tricube_pm1(z, out)
[docs] def pm2(self, z, out=None): r""" Partial moment of order 2: .. math:: \text{pm2}(x) = \left\{\begin{array}{ll} \frac{35}{486a^2} {\left(4 (ax)^{9} + 4 (ax)^{3} - {\left((ax)^{12} + 6 (ax)^{6}\right)} \mathrm{sgn}\left(ax\right) + 1\right)} & \text{, if} x\in[-1/a;1/a] \\ 0 & \text{, if } x < -1/a \\ 1 & \text{, if } x > 1/a \end{array}\right. """ return kernels_imp.tricube_pm2(z, out)
[docs]class Epanechnikov(Kernel1D): r""" 1D Epanechnikov density kernel with extra integrals for 1D bounded kernel estimation. """
[docs] def pdf(self, xs, out=None): r""" The PDF of the kernel is usually given by: .. math:: f_r(x) = \left\{\begin{array}{ll} \frac{3}{4} \left(1-x^2\right) & \text{, if} x \in [-1:1]\\ 0 & \text{, otherwise} \end{array}\right. As :math:`f_r` is not of variance 1 (and therefore would need adjustments for the bandwidth selection), we use a normalized function: .. math:: f(x) = \frac{1}{\sqrt{5}}f\left(\frac{x}{\sqrt{5}}\right) """ return kernels_imp.epanechnikov_pdf(xs, out)
__call__ = pdf upper = 1./_kernels_py.epanechnikov_width lower = -upper cut = upper
[docs] def cdf(self, xs, out=None): r""" CDF of the distribution. The CDF is defined on the interval :math:`[-\sqrt{5}:\sqrt{5}]` as: .. math:: \text{cdf}(x) = \left\{\begin{array}{ll} \frac{1}{2} + \frac{3}{4\sqrt{5}} x - \frac{3}{20\sqrt{5}}x^3 & \text{, if } x\in[-\sqrt{5}:\sqrt{5}] \\ 0 & \text{, if } x < -\sqrt{5} \\ 1 & \text{, if } x > \sqrt{5} \end{array}\right. """ return kernels_imp.epanechnikov_cdf(xs, out)
[docs] def pm1(self, xs, out=None): r""" First partial moment of the distribution: .. math:: \text{pm1}(x) = \left\{\begin{array}{ll} -\frac{3\sqrt{5}}{16}\left(1-\frac{2}{5}x^2+\frac{1}{25}x^4\right) & \text{, if } x\in[-\sqrt{5}:\sqrt{5}] \\ 0 & \text{, otherwise} \end{array}\right. """ return kernels_imp.epanechnikov_pm1(xs, out)
[docs] def pm2(self, xs, out=None): r""" Second partial moment of the distribution: .. math:: \text{pm2}(x) = \left\{\begin{array}{ll} \frac{5}{20}\left(2 + \frac{1}{\sqrt{5}}x^3 - \frac{3}{5^{5/2}}x^5 \right) & \text{, if } x\in[-\sqrt{5}:\sqrt{5}] \\ 0 & \text{, if } x < -\sqrt{5} \\ 1 & \text{, if } x > \sqrt{5} \end{array}\right. """ return kernels_imp.epanechnikov_pm2(xs, out)
[docs]class Epanechnikov_order4(Kernel1D): r""" Order 4 Epanechnikov kernel. That is: .. math:: K_{[4]}(x) = \frac{3}{2} K(x) + \frac{1}{2} x K'(x) = -\frac{15}{8}x^2+\frac{9}{8} where :math:`K` is the non-normalized Epanechnikov kernel. """ upper = 1 lower = -upper cut = upper def pdf(self, xs, out=None): return kernels_imp.epanechnikov_o4_pdf(xs, out) __call__ = pdf def cdf(self, xs, out=None): return kernels_imp.epanechnikov_o4_cdf(xs, out) def pm1(self, xs, out=None): return kernels_imp.epanechnikov_o4_pm1(xs, out) def pm2(self, xs, out=None): return kernels_imp.epanechnikov_o4_pm2(xs, out)
[docs]class normal_order4(Kernel1D): r""" Order 4 Normal kernel. That is: .. math:: \phi_{[4]}(x) = \frac{3}{2} \phi(x) + \frac{1}{2} x \phi'(x) = \frac{1}{2}(3-x^2)\phi(x) where :math:`\phi` is the normal kernel. """ lower = -np.inf upper = np.inf cut = 3. def pdf(self, xs, out=None): return kernels_imp.normal_o4_pdf(xs, out) __call__ = pdf def cdf(self, xs, out=None): return kernels_imp.normal_o4_cdf(xs, out) def pm1(self, xs, out=None): return kernels_imp.normal_o4_pm1(xs, out) def pm2(self, xs, out=None): return kernels_imp.normal_o4_pm2(xs, out)
kernels1D = [normal_kernel1d, tricube, Epanechnikov, Epanechnikov_order4, normal_order4] kernelsnD = [normal_kernel]