Bases: Orange.classification.Learner
NeuralNetworkLearner uses jzbontar’s implementation of neural networks and wraps it in an Orange compatible learner.
NeuralNetworkLearner supports all types of data and returns a classifier, regression is currently not supported.
More information about neural networks can be found at http://en.wikipedia.org/wiki/Artificial_neural_network.
Parameters: | |
---|---|
Return type: | Orange.multitarget.neural.neuralNetworkLearner or Orange.multitarget.chain.NeuralNetworkClassifier |
Uses the classifier induced by the NeuralNetworkLearner.
Parameters: | name (string) – name of the classifier. |
---|
Example of multi-target usage:
import Orange
l1 = Orange.multitarget.neural.NeuralNetworkLearner(n_mid=15, reg_fact=0.1, max_iter=100, name="Neural Network")
l2 = Orange.multitarget.binary.BinaryRelevanceLearner(
learner = Orange.classification.majority.MajorityLearner, name = "Majority")
learners = [l1, l2]
data = Orange.data.Table('multitarget:flare.tab')
results = Orange.evaluation.testing.cross_validation(learners, data, 3)
print "Classification - flare.tab"
print "%18s %6s %8s %8s" % ("Learner ", "LogLoss", "Mean Acc", "Glob Acc")
for i in range(len(learners)):
print "%18s %1.4f %1.4f %1.4f" % (learners[i].name,
Orange.multitarget.scoring.mt_average_score(results, Orange.evaluation.scoring.logloss)[i],
Orange.multitarget.scoring.mt_mean_accuracy(results)[i],
Orange.multitarget.scoring.mt_global_accuracy(results)[i])
# Neural Networks do not work with missing values, the missing values need to be imputed
data = Orange.data.Table('multitarget:bridges.tab')
imputer = Orange.feature.imputation.AverageConstructor()
imputer = imputer(data)
imp_data = imputer(data)
results = Orange.evaluation.testing.cross_validation(learners, imp_data, 3)
print "Classification - imputed bridges.tab"
print "%18s %6s %8s %8s" % ("Learner ", "LogLoss", "Mean Acc", "Glob Acc")
for i in range(len(learners)):
print "%18s %1.4f %1.4f %1.4f" % (learners[i].name,
Orange.multitarget.scoring.mt_average_score(results, Orange.evaluation.scoring.logloss)[i],
Orange.multitarget.scoring.mt_mean_accuracy(results)[i],
Orange.multitarget.scoring.mt_global_accuracy(results)[i])