Bases: Orange.classification.Learner
Creates a standard single class learner for each class variable. Binary relevance assumes independance of class variables.
Parameters: |
|
---|---|
Return type: | Orange.multitarget.BinaryRelevanceLearner or Orange.multitarget.BinaryRelevanceCLassifier |
Bases: Orange.classification.Classifier
Uses the classifiers induced by the BinaryRelevanceLearner. An input instance is classified into the class with the most frequent vote. However, this implementation returns the averaged probabilities from each of the trees if class probability is requested.
Parameters: |
|
---|
import Orange
data = Orange.data.Table('multitarget:bridges.tab')
cl1 = Orange.multitarget.binary.BinaryRelevanceLearner( \
learner = Orange.classification.majority.MajorityLearner, name="Binary - Maj")
cl2 = Orange.multitarget.binary.BinaryRelevanceLearner( \
learner = Orange.classification.tree.SimpleTreeLearner, name="Binary - Tree")
learners = [cl1,cl2]
results = Orange.evaluation.testing.cross_validation(learners, data)
print "Classification - bridges.tab"
print "%18s %6s %8s %8s" % ("Learner ", "LogLoss", "Mean Acc", "Glob Acc")
for i in range(len(learners)):
print "%18s %1.4f %1.4f %1.4f" % (learners[i].name,
Orange.multitarget.scoring.mt_average_score(results, Orange.evaluation.scoring.logloss)[i],
Orange.multitarget.scoring.mt_mean_accuracy(results)[i],
Orange.multitarget.scoring.mt_global_accuracy(results)[i])